

© 2010 Brian S. Borowski. All Rights Reserved.

iii

APPLICATION OF CHANNEL ESTIMATION TO UNDERWATER ACOUSTIC

 COMMUNICATION

ABSTRACT

The underwater channel poses numerous challenges for acoustic communication. Acous-

tic waves suffer long propagation delay, multipath and fading, limited bandwidth, and potentially

high spatial and temporal variability. In addition, there is no typical underwater acoustic channel;

every body of water exhibits quantifiably different properties. Consequently, current modems –

implemented in hardware with a fixed, conservative set of transmission parameters – are often ill-

suited for a particular channel, resulting in performance that is far from optimum. Very little

work has been done in the area of channel characterization, especially for waters only several me-

ters deep. As a result, network simulations often make conservative and/or inaccurate assump-

tions about shallow underwater channels.

In this thesis the Hudson River estuary is characterized as an acoustic communication

channel. The analysis reveals that the Hudson is a multipath fading channel (Rician fading over

200 m and Gamma fading over 505 m) with an extremely short coherence time of approximately

50 ms. A subset of the estimation techniques is then employed to develop a network simulation

and an adaptive, real-time software modem.

The simulator converts a transmitted packet into a modulated signal and digitally mixes it

with the channel estimates to produce a signal that approximates what would have been received

after transmission through the physical channel. When simulating a time-invariant channel, the

achieved bit error rates are, on average, within 3.34% of those obtained by transmission through

the actual channel. The simulator is modular and can easily accommodate new channel estimates,

modulation schemes, receiver techniques, and alternate implementations of higher layers in the

network stack.

iv

In the software modem each packet is preceded by an acoustic signal that is used for im-

pulse response estimation. The modem then processes the signal in real time and uses the inverse

impulse response to equalize the channel, allowing for the transmission of packets at higher data

rates with symbols whose duration is less than the multipath spread of the channel. In a time-

invariant shallow water test channel, the modem correctly decoded packets at up to 6 kbps. In an

AWGN channel, the modem‟s BER approached the theoretical limit for the given SNR.

Author: Brian S. Borowski

Advisor: Dan Duchamp

Date: June 22, 2010

Department: Computer Science

Degree: Doctor of Philosophy

v

Acknowledgments

I would like to thank my advisor Dr. Dan Duchamp for his guidance, support, and encou-

ragement throughout my doctoral studies. I am very grateful for the substantial amount of time

he set aside for my weekly meetings, which were always very productive and left me thinking

about new ideas and alternate approaches to solving problems. Dr. Duchamp‟s practical ap-

proach to research and dedication to implementing working systems are attributes that I will carry

on throughout my career. Finally, I wish to express gratitude for his flexibility in allowing me to

study this rather broad, interdisciplinary topic.

I would like to express thanks to Prof. Bruce McNair for helping me to understand some

of the intricacies of signal processing and linear systems. His insight and previous work expe-

rience were instrumental to the success of my projects.

Several others have contributed to my research efforts and overall learning experience. I

express my thanks to each of the following:

 Dr. Joseph Mitola III, for providing references and tips for characterizing channels and

building digital communication systems.

 Dr. Charles Suffel, for putting me in contact with people who could discuss the interdis-

ciplinary aspects of my research and for his general guidance throughout my doctoral

studies.

 Alex Sedunov, Nikolay Sedunov, and Mikhail Tsionskiy, for gathering data in the Hud-

son River estuary, providing equipment for my office experiments, and helping me get up

to speed in analyzing the measurements.

 Dr. Theodoros Kamakaris and Dr. Didem Kivanc-Tureli for sharing their knowledge and

ideas about communication systems.

vi

 Dr. Alexander Sutin, for giving me a background in underwater acoustics and the oppor-

tunity to study diver detection using passive sonar.

 Dr. Dimitri Donskoy, for several discussions on underwater acoustic propagation.

 Dr. Ionut Florescu, for his help with distribution fitting.

 Dr. Barry Bunin, for showing me the basics of electrical engineering.

I would also like to thank the Maritime Security Laboratory and members of the Stanley

Fellowship Committee for providing the funding for my doctoral studies. Without their support

none of this would have been possible.

vii

Table of Contents

ABSTRACT ... III

ACKNOWLEDGMENTS... V

LIST OF TABLES ... XIII

LIST OF FIGURES .. XV

CHAPTER 1 INTRODUCTION .. 1

1.1 APPLICATIONS OF UNDERWATER ACOUSTICS ... 1

1.2 REASONS FOR ACOUSTIC COMMUNICATION ... 3

1.3 PRINCIPLES OF UNDERWATER ACOUSTICS RELEVANT TO COMMUNICATION 5

1.4 MOTIVATION FOR RESEARCH ... 10

1.5 DISSERTATION OUTLINE ... 12

CHAPTER 2 SHALLOW WATER CHANNEL CHARACTERIZATION 14

2.1 INTRODUCTION ... 14

2.2 DESCRIPTION OF SIGNALS AND FUNCTIONS .. 15

2.2.1 Sounding Signal... 15

2.2.2 Impulse Response .. 26

2.2.3 Scattering Function .. 28

2.2.4 Multipath Intensity Profile... 30

2.2.5 Spaced-Frequency Correlation Function ... 32

2.2.6 Doppler Power Spectrum... 32

2.2.7 Spaced-Time Correlation Function.. 34

2.3 FADING DISTRIBUTIONS ... 35

2.4 UNDERWATER CHANNEL – OFFICE TEST ENVIRONMENT ... 37

2.4.1 Sounding Signal... 38

2.4.2 Initial Tub Configuration ... 39

viii

2.4.2.1 Impulse Response.. 40

2.4.2.2 Scattering Function ... 41

2.4.2.3 Multipath Intensity Profile .. 41

2.4.2.4 Spaced-Frequency Correlation Function ... 43

2.4.2.5 Doppler Power Spectrum .. 44

2.4.2.6 Spaced-Time Correlation Function ... 44

2.4.2.7 Analysis and Implications for Communication ... 45

2.4.2.8 Details of Calculation .. 47

2.4.3 Modified Tub Configuration ... 51

2.4.3.1 Impulse Response.. 52

2.4.3.2 Scattering Function ... 52

2.4.3.3 Multipath Intensity Profile .. 53

2.4.3.4 Spaced-Frequency Correlation Function ... 53

2.4.3.5 Doppler Power Spectrum .. 54

2.4.3.6 Spaced-Time Correlation Function ... 55

2.4.3.7 Analysis and Implications for Communication ... 55

2.5 UNDERWATER CHANNEL – HUDSON RIVER ESTUARY .. 56

2.5.1 Experiment .. 56

2.5.2 Sounding Signal... 57

2.5.3 Environmental Conditions ... 57

2.5.4 Time-Variant Impulse Response ... 60

2.5.5 Scattering Function .. 64

2.5.6 Multipath Intensity Profile... 65

2.5.7 Spaced-Frequency Correlation Function ... 66

2.5.8 Doppler Power Spectrum... 68

2.5.9 Spaced-Time Correlation Function.. 69

2.5.10 Fading Characteristics ... 70

ix

2.5.11 Analysis and Implications for Communication ... 81

2.5.12 Limitations of Experimental Setup.. 89

2.6 RELATED WORK ... 91

2.7 SUMMARY AND FUTURE WORK .. 94

CHAPTER 3 SIMULATION OF UNDERWATER CHANNEL AND PHYSICAL LAYER 97

3.1 PURPOSE ... 97

3.2 RELATED WORK ... 97

3.3 SIMULATION ... 102

3.3.1 Propagation and Transmission Delay .. 104

3.3.2 Transmission Loss ... 104

3.3.3 Noise .. 105

3.3.4 Modulation .. 106

3.3.5 Channel Emulation .. 108

3.3.6 Demodulation .. 110

3.4 EMULATOR VALIDATION .. 114

3.4.1 Procedure ... 115

3.4.2 Analysis ... 117

3.5 IMPLEMENTATION... 121

3.6 SIMULATION OUTPUT ... 125

3.7 FUTURE WORK ... 128

CHAPTER 4 SOFTWATER MODEM .. 131

4.1 OVERVIEW .. 131

4.2 MOTIVATION .. 131

4.3 RELATED WORK ... 133

4.4 SYSTEM ARCHITECTURE ... 138

x

4.4.1 Software Architecture .. 138

4.4.2 Associated Hardware ... 140

4.5 MODEM ARCHITECTURE ... 141

4.5.1 Transmitter Design .. 141

4.5.2 Receiver Design... 142

4.6 FRAME FORMAT ... 143

4.7 SIGNAL PROCESSING .. 144

4.8 CONTROL INTERFACE ... 151

4.9 PERFORMANCE ... 152

4.9.1 Computational Performance .. 152

4.9.2 Performance in AWGN Channel ... 155

4.10 LIMITATIONS .. 158

4.11 FUTURE WORK ... 159

CHAPTER 5 ... 160

SUMMARY .. 160

5.1 EVALUATION OF THESIS ... 160

5.2 CONTRIBUTIONS ... 160

APPENDIX A SOURCE CODE FOR CHAPTER 2 .. 163

A.1 CHIRP SIGNAL GENERATION ... 163

A.2 COMPARISON OF AUTOCORRELATION FUNCTION OF VARIOUS SOUNDING SIGNALS 163

A.3 COMPARISON OF AUTOCORRELATION FUNCTION OF WHITE NOISE SIGNALS OF VARIOUS

LENGTHS ... 167

A.4 CHANNEL CHARACTERIZATION .. 167

A.5 NOISE POWER SPECTRAL DENSITY ... 175

A.6 DISTRIBUTION FITTING OF MAGNITUDE LEVELS IN MULTIPATH ARRIVAL 176

xi

A.7 DISTRIBUTION FITTING OF MAGNITUDE LEVELS IN COMB SIGNAL .. 179

APPENDIX B SOURCE CODE FOR CHAPTER 3 .. 185

B.1 FFT CONVOLUTION .. 185

B.2 HARD LIMITER ... 185

B.3 SECOND-ORDER IIR BANDPASS FILTER ... 186

B.4 GENERATION OF CHIRP SIGNALS AND FSK AND PSK WAVEFORMS ... 186

B.5 VERIFICATION OF CHANNEL SIMULATION .. 188

B.6 MAIN FUNCTION FOR OMNET++ SIMULATION .. 195

APPENDIX C VALIDATION OF EMULATOR IN CHAPTER 3 .. 197

C.1 7.5 KHZ, 250 BPS .. 197

C.2 7.5 KHZ, 500 BPS .. 198

C.3 7.5 KHZ, 1250 BPS .. 199

C.4 7.5 KHZ, 2500 BPS .. 200

C.5 7.5 KHZ, 3750 BPS .. 202

C.6 12.5 KHZ, 250 BPS .. 203

C.7 12.5 KHZ, 500 BPS .. 204

C.8 12.5 KHZ, 1250 BPS .. 205

C.9 12.5 KHZ, 2500 BPS .. 206

C.10 12.5 KHZ, 3125 BPS .. 208

C.11 17.5 KHZ, 250 BPS .. 209

C.12 17.5 KHZ, 500 BPS .. 210

C.13 17.5 KHZ, 1250 BPS .. 211

C.14 17.5 KHZ, 2500 BPS .. 212

C.15 17.5 KHZ, 3500 BPS .. 214

APPENDIX D SOURCE CODE FOR CHAPTER 4 .. 216

xii

D.1 TUNNEL RELAY APPLICATION .. 216

D.2 UTIL.H FOR TUNNEL RELAY APPLICATION .. 225

D.3 UTIL.C FOR TUNNEL RELAY APPLICATION .. 226

D.4 SIGNALPROCESSOR.JAVA FOR SOFTWATER MODEM .. 227

D.5 LEVINSONDURBIN.JAVA FOR SOFTWATER MODEM .. 231

REFERENCES ... 235

VITA ... 245

xiii

List of Tables

TABLE 2-1: DELAY SPREAD (MS) OF MULTIPATH INTENSITY PROFILE COMPUTED WITH -20 DB THRESHOLD

 .. 42

TABLE 2-2: DOPPLER SHIFT AND SPREAD (HZ) OF STRONG MULTIPATH ARRIVALS 42

TABLE 2-3: COHERENCE BANDWIDTH (HZ) ... 43

TABLE 2-4: OVERALL DOPPLER SHIFT AND SPREAD (HZ) .. 44

TABLE 2-5: COHERENCE TIME (MS) ... 44

TABLE 2-6: DELAY SPREAD (MS) OF MULTIPATH INTENSITY PROFILE COMPUTED WITH -20 DB THRESHOLD

 .. 53

TABLE 2-7: DOPPLER SHIFT AND SPREAD (HZ) OF STRONG MULTIPATH ARRIVALS 53

TABLE 2-8: COHERENCE BANDWIDTH (HZ) ... 53

TABLE 2-9: OVERALL DOPPLER SHIFT AND SPREAD (HZ) .. 55

TABLE 2-10: DELAY SPREAD (MS) OF MULTIPATH INTENSITY PROFILE COMPUTED WITH -20 DB THRESHOLD

 .. 66

TABLE 2-11: DOPPLER SHIFT AND SPREAD (HZ) OF STRONG MULTIPATH ARRIVALS 66

TABLE 2-12: COHERENCE BANDWIDTH (HZ) ... 67

TABLE 2-13: OVERALL DOPPLER SHIFT AND SPREAD (HZ) .. 69

TABLE 2-14: COHERENCE TIME (MS) ... 70

TABLE 2-15: GOODNESS OF FITS, 200M, 35 KHZ SINUSOID .. 77

TABLE 2-16: GOODNESS OF FITS, 200M, 45 KHZ SINUSOID .. 77

TABLE 2-17: GOODNESS OF FITS, 200M, 60 KHZ SINUSOID .. 77

TABLE 2-18: GOODNESS OF FITS, 200M, 75 KHZ SINUSOID .. 77

TABLE 2-19: GOODNESS OF FITS, 200M, 85 KHZ SINUSOID .. 78

TABLE 2-20: GOODNESS OF FITS, 200M, STRONGEST IMPULSE RESPONSE TAP .. 78

TABLE 2-21: GOODNESS OF FITS, 505M, 35 KHZ SINUSOID .. 80

TABLE 2-22: GOODNESS OF FITS, 505M, 45 KHZ SINUSOID .. 80

xiv

TABLE 2-23: GOODNESS OF FITS, 505M, 60 KHZ SINUSOID .. 80

TABLE 2-24: GOODNESS OF FITS, 505M, 75 KHZ SINUSOID .. 80

TABLE 2-25: GOODNESS OF FITS, 505M, 85 KHZ SINUSOID .. 81

TABLE 2-26: GOODNESS OF FITS, 505M, STRONGEST IMPULSE RESPONSE TAP .. 81

TABLE 3-1: BIT RATES TESTED AT EACH CARRIER FREQUENCY IN THE OFFICE TUB 116

TABLE 3-2: OVERALL COMPARISON OF BERS OBTAINED WITH DATA TRANSMISSION VERSUS CONVOLUTION

 .. 118

TABLE 3-3: COMPARISON OF BERS OBTAINED WITH DATA TRANSMISSION VERSUS CONVOLUTION, PER

CARRIER FREQUENCY .. 118

TABLE 3-4: COMPARISON OF BERS OBTAINED WITH DATA TRANSMISSION VERSUS CONVOLUTION, GROUPED

BY THE TYPE OF MODULATION-DEMODULATION .. 118

TABLE 3-5: COMPARISON OF BERS OBTAINED WITH DATA TRANSMISSION VERSUS CONVOLUTION, GROUPED

BY BIT RATE ... 118

TABLE 4-1: PROCESSING TIME OF SUBROUTINES .. 152

TABLE 4-2: PERFORMANCE TEST RESULTS FOR BINARY FSK ... 156

TABLE 4-3: PERFORMANCE TEST RESULTS FOR 4-FSK ... 157

xv

List of Figures

FIGURE 1-1: SPHERICAL AND CYLINDRICAL SPREADING .. 5

FIGURE 1-2: SHADOW ZONES (WHITE AREAS) CREATED BY THE REFRACTION OF WAVES IN DEEP WATER 7

FIGURE 1-3: MULTIPATH PROPAGATION IN SHALLOW WATER CONSISTS OF THE DIRECT PATH AND

REFLECTIONS FROM THE SURFACE AND BOTTOM ... 8

FIGURE 1-4: CHANNEL-INDUCED INTERSYMBOL INTERFERENCE .. 8

FIGURE 2-1: AUTOCORRELATION OF HFM CHIRP 5-20 KHZ, 50.0 MS... 16

FIGURE 2-2: AUTOCORRELATION OF BANDPASS FILTERED WHITE NOISE 5-20 KHZ, 50.0 MS 17

FIGURE 2-3: AUTOCORRELATION OF LFM CHIRP 5-20 KHZ, 50.0 MS ... 17

FIGURE 2-4: AUTOCORRELATION OF DSSS/BPSK SIGNAL 5-20 KHZ, 42.6 MS .. 18

FIGURE 2-5: AUTOCORRELATION OF WHITE NOISE, 50.0 MS ... 18

FIGURE 2-6: AUTOCORRELATION OF WHITE NOISE SIGNALS, 10 MS AND 1 S. .. 20

FIGURE 2-7: POWER SPECTRAL DENSITY OF VARIOUS CHANNEL SOUNDING SIGNALS 21

FIGURE 2-8: IDEAL CHANNEL SOUNDING. LENGTH OF SOUNDING SIGNAL (60 MS) > MULTIPATH SPREAD (50

MS) .. 23

FIGURE 2-9: CORRECT CHANNEL SOUNDING. LENGTH OF SOUNDING SIGNAL (10 MS) PLUS PERIOD OF SILENCE

(50 MS) > MULTIPATH SPREAD (50 MS) .. 24

FIGURE 2-10: INCORRECT CHANNEL SOUNDING. LENGTH OF SOUNDING SIGNAL (30 MS) < MULTIPATH

SPREAD (50 MS) ... 25

FIGURE 2-11: MATLAB CODE TO PRODUCE THE TIME-VARYING IMPULSE RESPONSE OF A CHANNEL 28

FIGURE 2-12: MATLAB CODE TO PRODUCE THE SCATTERING FUNCTION OF A CHANNEL 29

FIGURE 2-13: RELATIONSHIPS BETWEEN SCATTERING FUNCTION AND DERIVED CORRELATION FUNCTIONS

AND POWER SPECTRA [PROAKIS 2008] .. 30

FIGURE 2-14: MATLAB CODE TO PRODUCE THE MULTIPATH INTENSITY PROFILE OF A CHANNEL 31

FIGURE 2-15: MATLAB CODE TO PRODUCE THE SPACED-FREQUENCY CORRELATION FUNCTION OF A

CHANNEL ... 32

xvi

FIGURE 2-16: MATLAB CODE TO PRODUCE THE DOPPLER POWER SPECTRUM OF A CHANNEL 33

FIGURE 2-17: MATLAB CODE TO PRODUCE THE SPACED-TIME CORRELATION FUNCTION OF A CHANNEL 34

FIGURE 2-18: UNDERWATER CHANNEL TESTBED INSIDE OFFICE .. 38

FIGURE 2-19: ENVELOPE OF AUTOCORRELATION OF LFM CHIRP 0-24 KHZ, 50.0 MS 39

FIGURE 2-20: INITIAL CONFIGURATION OF UNDERWATER CHANNEL IN OFFICE SETUP 39

FIGURE 2-21: SUCCESSIVE IMPULSE RESPONSE ESTIMATES OF OFFICE TEST TUB .. 40

FIGURE 2-22: SCATTERING FUNCTION OF OFFICE TEST TUB .. 41

FIGURE 2-23: MULTIPATH INTENSITY PROFILE OF OFFICE TEST TUB ... 42

FIGURE 2-24: SPACED-FREQUENCY CORRELATION FUNCTION OF OFFICE TEST TUB .. 43

FIGURE 2-25: DOPPLER POWER SPECTRUM OF OFFICE TEST TUB ... 44

FIGURE 2-26: SPACED-TIME CORRELATION FUNCTION OF OFFICE TEST TUB ... 45

FIGURE 2-27: FIRST ATTEMPT AT SPACED-TIME CORRELATION FUNCTION OF OFFICE TEST TUB 47

FIGURE 2-28: MAGNITUDE OF THE STRONGEST IMPULSE RESPONSE TAP OVER TIME 48

FIGURE 2-29: DOPPLER POWER SPECTRUM OF STRONGEST MULTIPATH ARRIVAL ... 49

FIGURE 2-30: DOPPLER POWER SPECTRUM OF STRONGEST MULTIPATH ARRIVAL IN DB SCALE. 50

FIGURE 2-31: FINAL CONFIGURATION OF UNDERWATER CHANNEL IN OFFICE SETUP 51

FIGURE 2-32: SUCCESSIVE IMPULSE RESPONSE ESTIMATES OF MODIFIED OFFICE TEST TUB 52

FIGURE 2-33: SCATTERING FUNCTION OF MODIFIED OFFICE TEST TUB ... 52

FIGURE 2-34: MULTIPATH INTENSITY PROFILE OF MODIFIED OFFICE TEST TUB .. 53

FIGURE 2-35: SPACED-FREQUENCY CORRELATION FUNCTION OF MODIFIED OFFICE TEST TUB 54

FIGURE 2-36: DOPPLER POWER SPECTRUM OF MODIFIED OFFICE TEST TUB .. 54

FIGURE 2-37: SPACED-TIME CORRELATION FUNCTION OF MODIFIED OFFICE TEST TUB 55

FIGURE 2-38: TEST SITE FOR CHANNEL SOUNDING EXPERIMENT .. 56

FIGURE 2-39: SOUND VELOCITY PROFILE FOR 505-METER CHANNEL ... 58

FIGURE 2-40: SOUND VELOCITY PROFILE FOR 200-METER CHANNEL ... 59

FIGURE 2-41: PSD OF AMBIENT NOISE IN HUDSON RIVER ESTUARY .. 59

FIGURE 2-42: PSD OF CHIRP SIGNAL AT 1M (FREQUENCY RESPONSE OF EMITTER) ... 61

xvii

FIGURE 2-43: ENVELOPE OF ORIGINAL CHIRP WAVEFORM AUTOCORRELATION FUNCTION 62

FIGURE 2-44: ENVELOPE OF EMITTED CHIRP WAVEFORM AUTOCORRELATION FUNCTION 62

FIGURE 2-45: SUCCESSIVE TIME-VARIANT IMPULSE RESPONSE ESTIMATES OF HUDSON AT 200M 63

FIGURE 2-46: SUCCESSIVE TIME-VARIANT IMPULSE RESPONSE ESTIMATES OF HUDSON AT 505M 63

FIGURE 2-47: SCATTERING FUNCTION OF HUDSON AT 200M .. 64

FIGURE 2-48: SCATTERING FUNCTION OF HUDSON AT 505M .. 64

FIGURE 2-49: MULTIPATH INTENSITY PROFILE OF HUDSON AT 200M ... 65

FIGURE 2-50: MULTIPATH INTENSITY PROFILE OF HUDSON AT 505M ... 65

FIGURE 2-51: SPACED-FREQUENCY CORRELATION FUNCTION OF HUDSON AT 200M 66

FIGURE 2-52: SPACED-FREQUENCY CORRELATION FUNCTION OF HUDSON AT 505M 67

FIGURE 2-53: DOPPLER POWER SPECTRUM OF HUDSON AT 200M ... 68

FIGURE 2-54: DOPPLER POWER SPECTRUM OF HUDSON AT 505M ... 68

FIGURE 2-55: SPACED-TIME CORRELATION FUNCTION OF HUDSON AT 200M ... 69

FIGURE 2-56: SPACED-TIME CORRELATION FUNCTION OF HUDSON AT 505M ... 70

FIGURE 2-57: FADING ENVELOPES IN HUDSON AT 200M .. 72

FIGURE 2-58: FADING ENVELOPES IN HUDSON AT 505M .. 73

FIGURE 2-59: CDF FOR FADING MEASUREMENTS AT 200M .. 74

FIGURE 2-60: CDF FOR FADING MEASUREMENTS AT 505M .. 74

FIGURE 2-61: PDF OF MEASUREMENTS AND FITS AT 200M .. 76

FIGURE 2-62: PDF OF MEASUREMENTS AND FITS AT 505M .. 79

FIGURE 2-63: SUCCESSIVE IMPULSE RESPONSE ESTIMATES WITH UNCORRECTED CLOCK SKEW 89

FIGURE 3-1: EIGENRAYS CHARACTERIZING THE ACOUSTIC PROPAGATION OVER 700 METERS IN THE NEW

ENGLAND SHELF TRACED USING BELLHOP [DESSALERMOS 2005] ... 98

FIGURE 3-2: BELLHOP THEORETICAL ESTIMATE OF MULTIPATH INTENSITY PROFILE OF NEW ENGLAND

SHELF AT 700 METERS [DESSALERMOS 2005] ... 98

FIGURE 3-3: ARCHITECTURE OF OMNET++ SIMULATION FOR PHY LAYER AND UNDERWATER ACOUSTIC

CHANNEL ... 103

xviii

FIGURE 3-4: NOISE LEVELS IN THE HUDSON RIVER ESTUARY PRODUCED BY DIFFERENT PASSING SHIPS 105

FIGURE 3-5: MATLAB CODE TO GENERATE A CPFSK WAVEFORM ... 107

FIGURE 3-6: MATLAB CODE TO GENERATE A PSK WAVEFORM.. 108

FIGURE 3-7: MATLAB CODE TO EXTRACT IMPULSE ESTIMATES TO INDIVIDUAL WAV FILES 109

FIGURE 3-8: CORRELATION RECEIVER WITH M REFERENCE SIGNALS {SI(T)} [SKLAR 2001] 110

FIGURE 3-9: MATLAB CODE IMPLEMENTING A CORRELATION RECEIVER FOR PSK SIGNALS 110

FIGURE 3-10: QUADRATURE RECEIVER FOR NONCOHERENT DETECTION OF FSK SIGNALS [SKLAR 2001] 112

FIGURE 3-11: MATLAB CODE IMPLEMENTING A QUADRATURE RECEIVER FOR FSK SIGNALS 113

FIGURE 3-12: NONCOHERENT DETECTION OF FSK SIGNALS USING BANDPASS FILTERS AND ENVELOPE

DETECTORS [SKLAR 2001] ... 113

FIGURE 3-13: MATLAB CODE IMPLEMENTING A RECEIVER FOR FSK SIGNALS WITH BANDPASS FILTERS AND

ENVELOPE DETECTORS .. 114

FIGURE 3-14: TIME DOMAIN VIEW OF RECORDED 5-SECOND LFM CHIRP SIGNAL FOLLOWED BY FSK-

MODULATED PACKETS AT 500 BPS WITH A 12.5 KHZ CARRIER .. 116

FIGURE 3-15: FREQUENCY DOMAIN VIEW OF FIGURE 3-13 (RECORDED 5-SECOND LFM CHIRP SIGNAL

FOLLOWED BY FSK-MODULATED PACKETS AT 500 BPS WITH A 12.5 KHZ CARRIER) 116

FIGURE 3-16: IMPULSE RESPONSE OF OFFICE TEST TUB DURING VALIDATION EXPERIMENT 119

FIGURE 3-17: FREQUENCY AND PHASE RESPONSE OF OFFICE TEST TUB, DERIVED FROM IMPULSE RESPONSE IN

FIGURE 3-15 .. 120

FIGURE 3-18: MATLAB CODE TO CALCULATE THE TRANSMISSION LOSS OVER THE ACOUSTIC LINK 123

FIGURE 3-19: BASH SHELL SCRIPT FOR BUILDING MATLAB SHARED LIBRARIES USED IN THE SIMULATOR . 123

FIGURE 3-20: FUNCTION SIGNATURE FOR MLFGETTRANSMISSIONLOSSDB IN C SHARED LIBRARY 124

FIGURE 3-21: C CODE THAT CALLS THE MATLAB LIBRARY TO OBTAIN THE VALUE OF TRANSMISSION LOSS

OVER A 505-M ACOUSTIC LINK .. 125

FIGURE 3-22: GRAPHICAL REPRESENTATION OF OMNET++ SIMULATION ... 125

FIGURE 3-23: OMNET++ TK ENVIRONMENT ... 126

FIGURE 3-24: TERMINAL OUTPUT OF OMNET++ SIMULATION .. 128

xix

FIGURE 4-1: GRC (GNU RADIO COMPANION) FLOW GRAPH [MILLER 2009] ... 136

FIGURE 4-2: SOFTWARE ARCHITECTURE OF ACOUSTIC MODEM .. 138

FIGURE 4-3: PROCESSING BLOCKS WITHIN THE JAVA MODEM .. 141

FIGURE 4-4: FORMAT OF A DATA FRAME .. 144

FIGURE 4-5: CAPTURE/CORRELATE BLOCK OF RECEIVER ... 145

FIGURE 4-6: STAGES OF NONCOHERENT FSK DETECTION .. 147

FIGURE 4-7: UNEQUALIZED RECEPTION OF DATA FRAME ... 148

FIGURE 4-8: DELAY SPREAD OF CHANNEL IN 3-7 KHZ BAND .. 148

FIGURE 4-9: INVERSE IMPULSE RESPONSE OF CHANNEL IN 3-7 KHZ BAND ... 148

FIGURE 4-10: RECEPTION OF EQUALIZED DATA FRAME .. 149

FIGURE 4-11: EMPIRICAL AND THEORETICAL BER VS. EB/N0 ... 158

1

Chapter 1

Introduction

1.1 Applications of Underwater Acoustics

 One of the earliest references to the existence of underwater acoustics appears in one of

Leonardo da Vinci‟s notebooks [Urick 1996]. In 1490, he wrote, “If you cause your ship to stop,

and place the head of a long tube in the water and place the outer extremity to your ear, you will

hear ships at a great distance from you.” Motivated by the sinking of the Titanic, in 1912 L. F.

Richardson filed a patent application with the British Patent Office for echo ranging with under-

water acoustics, but he did not implement his proposal [Urick 1996]. Meanwhile, in the United

States, R. A. Fessenden designed and built a moving-coil transducer for both submarine signaling

and echo ranging which, by 1914, was able to detect an iceberg at a distance of two miles [Urick

1996]. Military applications of sonar were stimulated by the outbreak of the World War I and II,

though it wasn‟t until the latter where echo-ranging sonar was able to effectively combat the

German U-boat [Urick 1996]. An underwater telephone, developed in 1945 in the United States

for communicating with submarines, was one of the first underwater communication systems

[Stojanovic 2003]. Today, underwater acoustics are used for communication in a broad range of

applications, mostly sensor-based, including ocean sampling networks, environmental monitor-

ing, undersea explorations, disaster prevention, assisted navigation, speech transmission between

divers, distributed tactical surveillance, and mine reconnaissance [Akyildiz 2005; Stojanovic

2003].

 The Maritime Security Laboratory (MSL) at Stevens Institute of Technology has been

researching port security, with emphasis on detecting underwater threats in the Hudson River. A

hypothetical extension to the lab‟s efforts is to design an underwater acoustic sensor network to

aid in detecting divers, surface swimmers, AUVs, and small surface boats. The nodes will gather

2

and process signals in real time and send the resulting information via acoustic links to a base

station with satellite or RF capabilities.

Over the past decade, network systems for similar applications have been deployed. For

example, the initial motivation for the Seaweb project was the need for wide-area undersea sur-

veillance in littoral waters by means of a deployable autonomous distributed system (DADS)

[Rice 2001]. Seaweb ‟98 led off a series of annual ocean experiments intended to progressively

advance the state of the art in underwater acoustic communications. The goal of Seaweb 2008,

the latest of these experiments, is to provide surveillance of the Port of Long Beach [NPS 2008].

The Persistent Littoral Undersea Surveillance Network (PLUSNet) is a multi-institution program

sponsored by the Office of Naval Research which aims to provide autonomous detection and

tracking of quiet submarines [Grund 2006]. While the network supports satellite or RF links be-

tween nodes, acoustic links are reserved for nodes that do not have a surface presence or must

maintain depth to carry out a mission. In addition, NATO recognizes the importance of detecting

submarines and other small submersibles and has established a research project for Reconnais-

sance, Surveillance, and Undersea Networks (RSN) [NATO 2008]. Among other goals, the plan

calls for “applied research into covert undersea communications and networking and technology

research into using LAN-based information architectures.”

Though many of today‟s efforts are directed toward security-based applications, some re-

cent ocean exploration/monitoring projects have made use of underwater communication. Be-

tween 1999 and 2002, the Front-Resolving Observational Network with Telemetry (FRONT)

study was established to accomplish data telemetry and remote control for a set of widely spaced

oceanographic sensors through the use of the Seaweb underwater acoustic network [Rice 2008].

Today, the South Florida Ocean Measurement Center (SFOMC) exists as an ongoing partnership

between the Navy and Florida Atlantic University for oceanographic monitoring of the Florida

3

Straits [Venezia 2003; GulfBase 2008]. One aspect of this project is the development and use of

acoustic modems in shallow water for real-time transmission of AUV observations to mobile and

fixed bottom receiving and telemetry instrumentation.

1.2 Reasons for Acoustic Communication

 While some projects deploy underwater networks for ocean sampling, many others still

rely on conventional techniques. There are two standard methods for gathering oceanographic

data that do not make use of acoustics. One such approach is to deploy tethered sensors. Al-

though this method results in high throughput with virtually no bit errors, it is limited to short

distances in locations where the cables can be placed unobstructed. The other widely used ap-

proach is to deploy underwater sensors that record data for a specified amount of time and then

are recovered upon completion of the task. With this method there are no bit errors, but there are

a significant number of drawbacks [Akyildiz 2005]:

1. The (repeated) deployment and recovery of the instruments can be an expensive, difficult,

or dangerous procedure.

2. The data processing cannot be performed in real time.

3. There is no interaction with the device after it is deployed, impeding any fine-tuning or

reconfiguration that might be necessary for maintaining functionality.

4. It might be difficult or impossible to detect the failure of an instrument until after it is re-

covered, possibly resulting in the failure of the entire mission.

5. The amount of data recovered is limited by the storage space on the device itself.

 Since both tethered and standalone devices have numerous disadvantages, most underwa-

ter sensor networks employ a wireless physical layer with acoustic links. Two other wireless me-

thods, radio frequency (RF) and optical transmission, have several limitations that prevent them

from being widely utilized in underwater channels, the most significant being short propagation

4

distance. While pure water is an insulator, most bodies of water contain dissolved salts and other

matter, making them partial conductors. The level of attenuation of radio signals is directly pro-

portional to the conductivity of the water. The attenuation of radio waves in water also rises with

an increase in frequency and is proportional to where f is the frequency in Hz, and s is the

conductivity of the water in mhos/meter
1
. Because of the salinity levels, attenuation in sea water

is very high, and to communicate at any depth, it is necessary to use very low frequencies (long

wave radio, 10 – 30 kHz) where attenuation is on the order of 3.5 to 5 dB per meter [Butler

1987].

While Maxwell‟s equations can be used to predict the propagation of electromagnetic

waves traveling in seawater, there have been some papers describing actual measurements of ho-

rizontal propagation. Propagation in seawater 76 meters deep at 7 MHz produced a transmission

distance of 460 meters [Al-Shamma'a 2004], while propagation at 14 MHz was experimentally

shown to produce a transmission distance of only some 10 to 20 feet [Siegel 1973]. In both expe-

riments, propagation exhibited significant signal loss. For frequencies from 0.1 – 20 MHz, the

total signal loss over 1 km is severe, ranging from -112 to -166 dB [Al-Shamma'a 2004]. A more

recent experiment demonstrated that electromagnetic waves propagated from 2 to 30 meters with

a constant transmitter power of 100 mW [Cella 2009].

Because of scattering and absorption, optical systems are also limited to short distances.

Scattering reduces signal levels and limits the maximum data rate when multipath stretches the

time of a pulse to that of the bit time. Infrared modulation cannot be used underwater, since wa-

ter is not transparent in that region of the spectrum. Visibility in the Irish Sea, for instance, is

typically 0 meters and only 1 – 2 meters at best due to suspended matter in the water [Shaw

2006]. Replacing infrared LEDs with high power blue and green LEDs has been stated to pro-

1 mho is a unit of electrical conductance, equal to one ampere per volt.

5

duce bandwidths up to 312.5 kbits/sec [Schill 2004]. This result was achieved in a round pool at

a distance of approximately 2 meters. The latest demonstrations have proven that optical com-

munication at 1 Gbit/sec through a 2-meter water pipe with up to 36 dB of narrow-beam extinc-

tion is possible [Hanson 2008]. Since it is difficult to perform such experiments in the ocean,

most underwater optical propagation measurements are performed in a lab tank, leaving the effi-

cacy of such systems in natural environments yet to be explored.

1.3 Principles of Underwater Acoustics Relevant to Communication

Acoustical transmission is more flexible than other approaches, as it can be deployed in a

wide variety of configurations, including networks consisting of both mobile and stationary

nodes. It is not, however, free of complexity. In fact, certain aspects of underwater acoustic

communications are more difficult than those of RF terrestrial networks, especially high propaga-

tion delay. In general, underwater acoustic communications are influenced by transmission loss,

bubbles, stratification, multipath propagation, Doppler spread, noise, and high propagation delay.

Figure 1-1: Spherical and cylindrical spreading. Sound generated by the sound source, shown as the

white dot in the center, begins by spreading out uniformly in all directions. The intensity of the

sound decreases rapidly as it spreads out from the sphere with radius s0 to the one with s. The sound

can no longer spread out uniformly once it reaches the surface and floor of the water, and begins to

spread out cylindrically, radiating horizontally away from the source. The intensity of the sound

decreases more slowly as it spreads from the cylinder with radius co to the one with c than when it

spreads out from the sphere with radius s0 to the one with s [URI 2008].

6

Transmission loss describes the weakening intensity of sound over a distance and is com-

prised of losses from both spreading and attenuation. Spreading loss is a geometrical effect that

represents the weakening of sound as the wave moves outward from the source. It can be further

classified as spherical spreading, cylindrical spreading, or a variant with properties somewhere

between the two. Spherical spreading is omnidirectional, where the sound intensity decreases

with the square of the range. Cylindrical spreading, on the other hand, takes place in horizontal

channels, where the pressure of the sound varies inversely with the range [Urick 1996]. Figure

1-1 depicts the differences between the two types of spreading. Attenuation loss encompasses the

effects of absorption, scattering, and leakage out of a sound channel [Urick 1996]. Absorption, a

true loss of acoustic energy that results from the conversion of that energy into heat, accounts for

the majority of attenuation. Marsh and Schulkin‟s empirical formula for the attenuation coeffi-

cient in sea water is often used for frequencies between 3 kHz and 0.5 MHz, while Thorp‟s for-

mula better describes the attenuation of low frequency sounds, in the range of 100 Hz to 3 kHz

[Brekhovskikh 2003]. The attenuation coefficient produced by both formulas is expressed in

dB/km for a frequency f in kHz; however, Marsh and Schulkin‟s formula also requires values for

the salinity and hydrostatic pressure of the body of water. Since attenuation increases rapidly

with frequency, there exists an upper limit on the frequency used for a link of a given distance in

a digital communication system.

Bubbles produced by breaking waves at the surface can influence the propagation of high

frequency signals. No bubble-induced losses were discovered for waves produced with wind

speeds of 6 m/s or less [Preisig 2006]. However, with faster wind speeds, losses increased as

wind speed increased, with 20 dB loss reported for a wind speed of 10 m/s.

7

Figure 1-2: Shadow zones (white areas) created by the refraction of waves in deep water.

Stratification, the separation of a body of water into layers of similar densities, can also

greatly impact the availability of an acoustic link. Fluctuations in the sound speed within a chan-

nel cause the refraction of signals, which in turn lead to shadow zones, areas nearly void of

acoustic signal. This shadow zone phenomenon occurs in large bodies of water at a depth of

5000 m and distance of 100 km as well as in shallow regions of about 100 m in depth and 3 km

across [Preisig 2006]. Figure 1-2 shows the refraction of waves in a deep water environment with

a Munk sound velocity profile
2
 [Munk 1974] and the shadow zones created by this propagation

pattern.

2 The sound velocity profile, sometimes called the sound speed profile, plots the velocity of sound as a function of

depth. The velocity values are often derived from salinity, temperature, and depth measurements. The Munk profile is

a canonical sound velocity profile that illustrates features typical of deep water environments.

8

Figure 1-3: Multipath propagation in shallow water consists of the direct path and reflections from

the surface and bottom.

Figure 1-4: Channel-induced intersymbol interference. The top portion shows how a transmitted

signal appears at the receiver after passing through a channel where the symbol time Ts is greater

than the delay spread of the channel Tm. Since the channel represented here is ideal, it does not mod-

ify the transmitted signal in any way. The bottom portion shows how a transmitted signal becomes

distorted when Ts is less than Tm. The symbol from one time slot “smears” into the following slot,

resulting in channel-induced intersymbol interference.

Received Signal

Ts

Transmitted Signal

Ts

Transmitted Signal

ISI

Received Signal

Multipath Intensity Profile

Tm

Tm

Multipath Intensity Profile

Direct Path

Surface Reflection

Bottom Reflection

Transmitter

Receiver

9

Multipath propagation in an underwater acoustic network is the phenomenon where the

acoustic signal will reach the receiver by two or more paths. It is prevalent in shallow water,

where acoustic links are horizontal and spreading is considered to be almost entirely cylindrical,

but it is not much of an issue in vertical channels. In shallow environments, some acoustic sig-

nals from the transmitter are reflected off the surface of the water and bottom of the channel be-

fore reaching the receiver, thus creating multipath propagation (see Figure 1-3). Delay spreads in

shallow environments can last for several milliseconds. Unless complex adaptive filters are uti-

lized, the duration of a communication system‟s symbol time must be greater than the delay

spread of the channel in order to avoid intersymbol interference, or ISI (see Figure 1-4).

Shallow water channels exhibit temporal variation due to tides, a moving surface, and

fluctuating amounts of water traffic. These changes significantly affect the impulse response of

the channel, leading to potentially drastic differences in the estimates obtained over sub-second

intervals. These rapid fluctuations in the channel lead to a short coherence time, the duration over

which the channel‟s properties are essentially invariant. When viewed from the from the fre-

quency domain, the channel exhibits a wide Doppler spread. In time-varying environments, re-

ceivers need to repeatedly estimate and quantify changes in the environment to keep an acoustic

link functional. Such systems typically employ a decision feedback equalizer (DFE) [Stojanovic

2003].

Several papers assume ambient noise in underwater channels is white Gaussian noise;

however, this assumption is now known to be incorrect. Though it is difficult to precisely derive

a formula for noise, empirical formulas that give the power spectral density of noise caused by

turbulence, shipping, waves, and thermal noise do exist [Coates 1989]. These formulas are gene-

ralized and do not account for extreme conditions in certain environments. For example, during

some of the underwater acoustic experiments conducted in the Hudson River off the campus of

10

Stevens Institute of Technology, the sounds and physical vibrations produced a pile-driver in a

nearby construction site obliterated all signals up to 100 kHz. In addition, in shallow areas with

temperate and tropical waters, such as Kaneohe Bay, O‟ahu in the Hawaiian Islands, snapping

shrimp produce a tremendous amount of noise. The peak-to-peak source level of a snap can

reach 185 dB re: 1 µPa, and the frequency spectrum of the snap is extremely broad, with energy

beyond 200 kHz [Au 1998]. Thus, the noise present in some of these shallow environments can

render underwater acoustic communication impossible at times.

The speed of sound in water is approximately 1500 m/s, which is five orders of magni-

tude less than the speed of light, or 3 x 10
8
 m/s. This slow speed leads to long propagation delays

of about 0.67 km/s and comparatively large motion-induced Doppler shift [Partan 2006]. Some

researchers believe that the high delay variance is more detrimental to the design of efficient pro-

tocols than the propagation delay, since it precludes accurately estimating round trip time [Akyil-

diz 2005]. Others state that although the underwater acoustic channel is time-varying, propaga-

tion delays can be estimated and are stable enough to use within network protocols [Partan 2006].

1.4 Motivation for Research

The initial goal of this research was to create an adaptive communication system that

would allow a set of nodes to be deployed into any body of water; the nodes would then sense

channel conditions and adapt. Adaptation would be both initial (immediately upon deployment)

and ongoing, hopefully providing increased overall system efficiency compared to non-adaptive

systems. It soon became apparent that the goal was overly ambitious because a fully adaptive

system would have to be able to change not only physical parameters (such as frequency and

modulation technique) but also link-level and routing-level operation. Several other facts also

became apparent during the literature search and formative stages of this work, including that (1)

there was no satisfactory adaptive experimental platform, (2) there was no satisfactory simulation

11

platform, and (3) there was limited information about how to characterize an acoustic underwater

channel and how to apply results of the characterization to the design of adaptive digital commu-

nication. Accordingly, this research set out to address these three shortcomings. The design of a

multi-node system, adaptive at all levels, is left as future work.

Understanding how the channel affects signals is critical to the design of an efficient

communication system. At the physical layer, thorough analysis of the channel can suggest the

type of modulation, symbol duration, required source level, length of packets, and the type and

rate of equalization. In this dissertation, data collected during channel sounding experiments and

the methods used to process that data become the backbone of the entire effort. The resulting

impulse response estimates from both a controlled, time-invariant indoor test environment and the

complex, time-variant Hudson River estuary are processed from the time and frequency domains

to fully describe the properties of the channels. Analysis of the Hudson is a unique extension to

previous work in this area because, at 3 meters, it is shallower than other channels that have been

studied. In addition, unlike many publications or even textbooks, this dissertation clearly shows

how to compute the various channel characterization functions in MATLAB, describes the limita-

tions of the experimental setup, and offers solutions to mitigate the effects of the limitations, all

of which are valuable to the experimentalist.

Even the most recent efforts in simulating the underwater channel have fundamental limi-

tations. In the World Ocean Simulation System (WOSS), the authors use the BELLHOP model

to derive the Signal-to-Interference-plus-Noise Ratio (SINR) from which they compute the bit

error rate (BER) for a given modulation [Guerra 2009]. ISI caused by multipath propagation,

common in shallow water channels, is not taken into account in this model. Therefore, in this

dissertation, a new model based on channel measurements is introduced. Through a mathemati-

cal process called convolution, the impulse response estimates obtained from the channel sound-

12

ing experiment afford a more accurate simulation of how the channel distorts an acoustic signal.

The original modulated waveform is “mixed” with the channel and sent to a receiver imple-

mented fully in software, where the actual BER is computed.

The last portion of the research combines the channel estimation techniques and software

defined radio aspects of the simulation to produce a pseudo real-time underwater acoustic modem

– the Softwater Modem [Borowski 2009]. Unlike existing efforts implemented purely in software

[GNU 2010; Sailer 2000], this modem is packet-based and mitigates channel-induced ISI through

means of a zero-forcing equalizer. It has been proven to work in an office test environment that

exhibits a significant amount of multipath propagation where the other software defined radio

(SDR) platforms have failed. Furthermore, the Softwater Modem allows the user to configure

numerous parameters including the carrier frequency, symbol rate, packet detection threshold,

and number of parity bytes used in the Reed-Solomon error correcting codes.

1.5 Dissertation Outline

The dissertation is divided into the following topics: channel characterization, software

modem design and implementation, and simulation of the underwater channel and physical layer.

Chapter 2 discusses the characterization of two very different channels, those being the Hudson

River estuary adjacent to the Stevens Institute of Technology campus and an office test setup

comprised of a plastic tub filled with water. In both cases, successive impulse response estimates

are processed to generate the channel‟s scattering function, from which all other characterization

functions are derived – multipath intensity profile, spaced-frequency correlation function, Dopp-

ler power spectrum, and spaced-time correlation function. Amplitude fluctuations of the compo-

nents in the multipath intensity profile are fit to the Rayleigh, Rice, and Nakagami-m distributions

often used to model fading channels. Values obtained in the analysis of the characterization func-

13

tions yield estimates of the delay spread and coherence time of the channel as well as the severity

of fading, all of which greatly influence the design of a digital communication system.

Chapter 3 discusses how to more accurately implement channel and physical (PHY) layer

models in the OMNeT++ discrete-event simulator. In order to simulate a time-variant channel,

an impulse response is chosen from the database at random and convolved with the waveform

representing the modulated packet. The resulting signal, which now contains channel-induced

distortion, is passed to a receiver block, where it is demodulated and its bit BER is computed.

The signal processing blocks, exported as a shared library, are performed in MATLAB and called

from within the OMNeT++ simulation. Aspects of the simulation‟s architecture are described in

detail. In addition, the experiment used to validate the accuracy of the estimated BERs is ex-

pounded.

Chapter 4 presents the design of the Softwater Modem, an acoustic modem fully imple-

mented in software. The modem allows users to easily deploy network applications that make

use of the sockets interface in Linux. The system is comprised of three layers of user space ap-

plications which pass data among themselves via UDP sockets and the TUN kernel space charac-

ter device. The modem portion of the system is a Java application built as a series of stages that

handle various aspects of signal processing. The details of the algorithms, computational perfor-

mance, and expected BER in an additive white Gaussian noise (AWGN) channel are presented.

Chapter 5 provides an evaluation of the thesis and a summary of the contributions to the

field. The appendix contains the most relevant sections of source code for channel characteriza-

tion routines, the acoustic modem, and the simulation of the channel and physical layers.

14

Chapter 2

Shallow Water Channel Characterization

2.1 Introduction

Over the past three decades there has been much research in underwater acoustic com-

munication. While recent years have seen the shift from noncoherent point-to-point communica-

tion to developing networks based on coherent reception techniques [Chitre 2008], relatively few

papers have focused on the fundamental process of characterizing the underwater acoustic chan-

nel. There is no typical underwater channel [Preisig 2006]; each environment possesses different

characteristics that will affect the performance of a digital communication system. Therefore, it

is necessary to study numerous underwater acoustic channels to gain a quantitative understanding

of their properties, as had been done in the RF research community.

The shallow water acoustic communication channel can be classified as a multipath fad-

ing channel. It generally exhibits a long multipath delay spread, which can lead to intersymbol

interference (ISI) if the spread exceeds the symbol time of the communication system, as shown

in Figure 1-4. The channel typically has significant Doppler spread in the frequency domain, or

short coherence time when viewed in the time domain. Communication in estuarine environ-

ments is often complicated by ambient noise from both shipping vessels and activity on the sur-

rounding land, such as that in a construction site. The depth of water in an estuary is extremely

shallow; thus, the effects of surface waves and wind speed on an underwater acoustic signal are

more apparent. In addition, estuaries are prone to stratification, the separation of a body of water

into layers of similar densities. Fluctuations in the sound speed within a water column cause the

refraction of signals, which in turn leads to shadow zones – areas nearly void of acoustic signal,

as shown in Figure 1-2.

15

Measuring and analyzing a channel‟s parameters is a necessary step for the design of a

successful communication system. Moreover, numerous channel measurements are required to

build up a database of underwater environments that helps the research community create a model

for more realistic simulation of the physical as well as higher layer protocols within a communi-

cation system‟s network stack. Chapter 3 describes how to use the channel measurements from

this chapter in an underwater network simulation implemented in OMNeT++ and MATLAB.

2.2 Description of Signals and Functions

The impulse response provides all the information necessary for channel characterization.

In order to estimate the channel‟s impulse response, two signals are needed – a known reference

or “sounding” signal that covers the frequency band of interest and the received signal, that is,

one that has passed through the channel and has undergone some degradation. The impulse re-

sponse of a system taken repeatedly over time affords the ability to produce the scattering func-

tion, which in turn can be made to show different channel correlation functions via Fourier trans-

forms.

2.2.1 Sounding Signal

Since a unit impulse is an unrealizable signal, engineers choose a practical input signal to

the system that will lead to an accurate estimation of the system‟s impulse response. Several sig-

nals are frequently employed, those being a LFM (linear frequency modulated) chirp [Dessaler-

mos 2005], a HFM (hyperbolic frequency modulated) chirp [Michalopoulou 2001], white noise

[Schomer 1972], and a DSSS BPSK (direct sequence spread spectrum binary phase shift keying)

signal [Chitre 2004; Dessalermos 2005]. While it is debatable which sounding signal is the best,

all except for the HFM chirp possess acceptable autocorrelation properties as to closely approx-

16

imate the Dirac delta function
3
. Autocorrelation that approximates the Dirac delta function is the

test of goodness for a sounding signal. In general, the best result is obtained when the sounding

signal spans the entire bandwidth from 0 Hz up to the Nyquist
4
 frequency (except in the case of

the HFM chirp). However, because of the potential ambient noise in lower frequency bands and

the lack of low frequency response in most emitters, the starting frequency for the sounding sig-

nal is sometimes chosen to be several kHz. It should be noted, though, the increasing the lower

frequency will decrease the autocorrelation function‟s likeness to the Dirac delta function, as seen

in Figures 2-1 through 2-5.

Figure 2-1: Autocorrelation of HFM chirp 5-20 kHz, 50.0 ms.

3 In the context of signal processing, the Dirac delta function is referred to as the unit impulse, or a signal having infi-

nite amplitude, zero width, and unit area.
4 The Nyquist frequency is half the sampling frequency of a discrete signal processing system.

17

Figure 2-2: Autocorrelation of bandpass filtered white noise 5-20 kHz, 50.0 ms.

Figure 2-3: Autocorrelation of LFM chirp 5-20 kHz, 50.0 ms.

18

Figure 2-4: Autocorrelation of DSSS/BPSK signal 5-20 kHz, 42.6 ms.

Figure 2-5: Autocorrelation of white noise, 50.0 ms.

Figures 2-1 through 2-5 show the autocorrelation of five sounding signals that have been

used by researchers to estimate a channel‟s impulse response, in increasing order of similarity to

19

the Dirac delta function. The autocorrelation of the HFM chirp in Figure 2-1 exhibits significant

side lobes which will reduce the accuracy of the impulse response estimate. The autocorrelation

of the bandpass filtered white noise in Figure 2-3 and LFM chirp signal in Figure 2-4 are roughly

the same, with smaller side lobes than the HFM chirp. The LFM chirp signal, however, possesses

less fluctuation in the correlation coefficient at lags further from the center. While the autocorre-

lation function of both types of chirp signals exhibits side lobes, it is stated that in horizontal shal-

low water, where the channel frequency spreading is low if the transmitter and receiver remain

fixed, chirp signals are well known to possess the best delay (range) sensitivity [Cook 1998].

Figure 2-4 shows the autocorrelation of the DSSS/BPSK signal generated from the

MSE/AO maximum length sequence of code length 511 found in [Kärkkäinen 2007] with a 12

kHz carrier. The MSE/AO criteria emphasize autocorrelation properties, and the autocorrelation

of just the sequence itself is indeed an impulse. However, when mixed with a carrier, the auto-

correlation of the resulting BPSK signal possesses one lobe of negative correlation on each side

of the impulse.

The noise signal in Figure 2-5 most closely approaches the Dirac delta function. It is

supposed to represent white noise, but since the duration of the signal is so short, not all frequen-

cy components have been given equal representation, making it improper to fully classify the

noise as “white”. The autocorrelation of this signal fluctuates minimally at lags off to the sides,

and it does not exhibit any side lobes. Moreover, increasing the length of the signal will further

improve the autocorrelation function, as there is more randomness in a longer signal. Figure 2-6

illustrates how a 1-second clip of white noise exhibits a much cleaner autocorrelation function

than a 10-ms clip.

20

Figure 2-6: Autocorrelation of white noise signals, 10 ms and 1 s.

To make a fair comparison among the autocorrelation functions of all five signals, each

signal was designed to be about the same length and use approximately the same bandwidth. The

5-20 kHz frequency band was utilized for two reasons. 5 kHz was used as the lower bound be-

cause, as already stated, many emitters are incapable of producing low frequency signals. 20 kHz

was used as the upper bound so that a typical PC sound card can be used to play the sounding

signals. The generation of the chirp signals is straightforward. See Appendix A for MATLAB

code. Generating a DSSS/BPSK digitally requires the designer to pay careful attention to the

sampling rate of the playback hardware. In particular, each symbol in the maximum length se-

quence must be multiplied by an integer number of samples in each sampling period. This im-

plies that the symbol rate must divide the sampling rate, which thus limits the number of symbol

rates that can be used. The bandwidth of the main lobe of the resulting BPSK signal is

 (2.1)

21

where Ts represents the symbol time and Rs is the symbol rate. Each symbol must contain the

same number of periods of the carrier wave so that the phase shifts always occur 180° apart.

Therefore, the carrier frequency Fc must be a multiple of the symbol rate in the range 1 ≤ Fc ≤

Nyquist frequency.

The DSSS/BPSK signal described in this section was created with a 12 kHz carrier fre-

quency and a symbol rate 12 ksamples/sec. It occupies the entire bandwidth below 24 kHz. The

unfiltered white noise also covers the same band. The power spectral density of all five sounding

signals is shown in Figure 2-7.

Figure 2-7: Power spectral density of various channel sounding signals.

In order to produce the channel‟s scattering function with enough resolution (wide range

of frequencies), the channel needs to be sounded as often as possible per second. There are, how-

ever, some constraints on the length of the sounding signal. The length of the signal must not

exceed the coherence time of the channel. This restriction exists because the channel‟s characte-

ristics need to remain nearly constant over the duration of the sounding in order to capture a sin-

gle undistorted impulse response estimate. When played consecutively with no silence between

22

repetitions, the length of the sounding signal must exceed the channel‟s multipath spread. If there

is no silence between soundings, all multipath arrivals must appear within the duration of a

sounding so that late arrivals do not overlap with the arrivals appearing from subsequent repeti-

tions. This restriction can be eliminated if a shorter chirp signal can be used; however, it must be

followed by a period of silence long enough to allow all multipath propagations to taper off.

Though this method produces correct estimates, it results in correlations with reduced SNR (sig-

nal-to-noise ratio), as there are less samples in each sounding to work with. Therefore, there is no

benefit to using gaps of silence.

 Figures 2-8 through 2-10 illustrate why the restrictions on the length of a sounding signal

exist. In all three sections, the multipath spread of the channel is 50 ms. Figure 2-8 depicts cor-

rect channel sounding with the use of a 60 ms signal that exceeds the 50 ms multipath spread.

Figure 2-9 also depicts correct, though not ideal, channel sounding with the use of a 10 ms signal

followed by 50 ms of silence that guarantees all arrivals taper off before the subsequent sounding.

Figure 2-10 shows what happens when the channel is sounded by a signal that is 20 ms shorter

than the multipath spread. The main arrival from the second chirp signal appears before all the

multipath propagations from the first taper off. Therefore, cross-correlation produces large peaks

that appear in the middle of the intensity profile for the first chirp, resulting in smeared output.

23

Figure 2-8: Ideal channel sounding. Length of sounding signal (60 ms) > multipath spread (50 ms).

Time

Intensity

Multipath Intensity Profile

50 ms 50 ms

Time

Sounding Signals

60 ms

Frequency

Time

Frequency

Multipath Arrivals

60 ms 60 ms

Overlap of multipath arrivals from first chirp

with arrivals from second chirp produces no

problem with cross-correlation as long as the

autocorrelation of the sounding signal nearly

approximates the Dirac delta function.

24

Figure 2-9: Correct channel sounding. Length of sounding signal (10 ms) plus period of silence (50

ms) > multipath spread (50 ms).

Time

Sounding Signals

10 ms

Frequency

60 ms

Time

Intensity

Multipath Intensity Profile

50 ms 50 ms

Multipath Arrivals

Frequency

Time

60 ms 60 ms

No overlap of multipath arrivals from first

chirp with arrivals from second chirp means

there is no chance of error in the resulting mul-

tipath intensity profile (in the absence of

noise). Notice the lower SNR of the multipath

intensity profile obtained with the shorter

sounding signal.

25

Figure 2-10: Incorrect channel sounding. Length of sounding signal (30 ms) < multipath spread (50

ms).

 The analysis of all the sounding signals presented in this section leads to the following

conclusions. A long clip of white noise exhibits the best autocorrelation properties. A 50-ms clip

still possesses good autocorrelation, but since the emitter cannot produce low frequencies, the

white noise signal essentially becomes bandpass-filtered. The differences between the bandpass-

filtered white noise of Figure 2-2 and the LFM chirp signal of Figure 2-3 are minor, with the

LFM chirp signal being slightly better. In addition, a LFM chirp signal is much less likely to ap-

pear randomly in any environment than a clip of white noise. Therefore, the LFM chirp signal

was used as the sounding signal in the experiments presented later in this chapter.

30 ms 30 ms
Time

Sounding Signals

Frequency

60 ms

Time

Intensity

Multipath Intensity Profile (incorrect)

50 ms 50 ms

60 ms
Time

Multipath Arrivals

Frequency

60 ms 60 ms

Multipath arrivals from first chirp overlap with

arrivals from second chirp, resulting in an in-

correct multipath intensity profile with no way

to separate the correlation of each chirp.

26

2.2.2 Impulse Response

The impulse response h(t) of a linear system is the response when the input to the system

is equal to the delta function, or unit impulse. The response of a linear system y(t) to an arbitrary

input signal x(t) is found by convolving x(t) with h(t), as in

 (2.2)

or

 (2.3)

where τ is the time at which the impulse was applied. Since the system is causal, the lower limit

of the integral can be changed to 0, enabling y(t) to be expressed as

 (2.4)

or in discrete form, which is more practical when working with digital communication systems,

as

 (2.5)

where M is the maximum of the number of samples in signals x and h, and the shorter signal is

zero-padded to the length of the longer one.

When the system‟s input and output signals are known, the process of solving for the im-

pulse response becomes the inverse of convolution, or deconvolution, which actually has no di-

rection definition in the time domain [Riad 1986]. However, in the frequency domain, deconvo-

lution is represented as

 (2.6)

where X(j), Y(j), and H(j) are the frequency-domain forms of x(t), y(t), and h(t).

27

In practical situations, x(t) is a signal with limited bandwidth, causing X(j) to be close or

equal to zero at some frequencies. In this case deconvolution results in an unstable filter. Wiener

deconvolution can be used to improve the accuracy of the resulting impulse response if the power

spectral density of the noise in the channel is known. Another solution, though computationally

expensive, capitalizes on the fact that convolution is the equivalent to matrix multiplication of the

form of Ax=b, where A is a matrix that represents the input to the system, b represents the output,

and x is the system‟s impulse response. This solution approaches deconvolution as a pseudoin-

verse
5
 problem. This method experiences problems in the presence of noise, amplifying it pro-

portionally to the inverse of the singular values of A. Performing the pseudoinverse operation

with a tolerance close to the smallest singular value produces estimates with an acceptable rate of

error.

Because of the complications associated with deconvolution, cross-correlation, a measure

of the likeness of two signals, is the method most often used to determine a system‟s impulse re-

sponse. In the discrete case, the cross-correlation of signals x[t] and y[t] is defined by

 (2.7)

where M is the maximum of the number of samples in signals x and y, the shorter signal is

zero-padded to the length of the longer one, and the superscript asterisk indicates the com-

plex conjugate. Cross-correlation has the obvious benefit of computational simplicity when

compared to any method of deconvolution, especially when it is performed in the frequency

domain using the fast Fourier transform.

Assuming the channel is wide-sense stationary (WSS) uncorrelated scattering (US)

5 Pseudoinverse is the standard definition for the inverse of a matrix if the matrix is not square or singular. A square

matrix has an equal number of rows and columns. A singular matrix is a square matrix that does not have a matrix

inverse. A matrix is singular iff its determinant is 0.

28

(combined, WSSUS) [Bello 1963], the time-varying complex-valued low-pass impulse response

c(τ; t) of the underwater channel is captured via the following procedure:

1. A sounding signal is repeatedly transmitted through the channel and recorded.

2. The imaginary part of the reference sounding signal is obtained via the Hilbert transform.

3. The received signal is cross-correlated with the complex conjugate of the reference signal.

Additional steps are sometimes necessary during field tests, as seen in Section 2.5.4. Figure 2-11

provides MATLAB code that produces the time-varying impulse response of a channel.

%% Computes impulse response for spreads up to 10 ms.

seconds = 0.010;

impulseResponse = zeros(numOfImpulseResponses, seconds*samplingRate);

for i = 1:numOfImpulseResponses

 snip = recordedSignal((i-1)*referenceSamples+1:i*referenceSamples);

 temp = fftshift(xcorr(snip, conj(referenceSignal)));

 impulseResponse(i,:) = temp(1:seconds*samplingRate);

end

% Normalize output.

maxVal = max(max(abs(impulseResponse)));

impulseResponse = impulseResponse / maxVal;

Figure 2-11: MATLAB code to produce the time-varying impulse response of a channel.

In summary, successive impulse response estimates of a linear system can be obtained via

cross-correlation. The procedure is practical, efficient, and accurate. The impulse response esti-

mates obtained with this method fully describe the channel. These estimates can be processed to

provide various statistical views of the channel, presented in subsequent sections of this chapter.

2.2.3 Scattering Function

The scattering function gives the average power output of the channel as a function of

time delay τ and Doppler frequency λ and is the basis for computing the remainder of the channel

characterization functions described in this chapter. Assuming that c(τ; t) is a WSS random

process, the auto-correlation of c(τ; t) is defined as

29

 (2.8)

where * denotes the complex conjugate. Further assuming uncorrelated scattering – that the

attenuation and phase shift of the channel at two separate path delays and are uncorrelated,

the WSS assumption is strengthened to WSSUS, and

 (2.9)

The scattering function is defined as the Fourier transform of with respect to the

parameter [Goldsmith 2005], as in

 (2.10)

%% Computes scattering function.

tauSamples = length(impulseResponse);

lambdaSamples = numOfImpulseResponses;

scatteringFunction = zeros(tauSamples, lambdaSamples * 2 - 1);

for i = 1:tauSamples

 temp = fftshift(fft(xcorr(impulseResponse(:,i))));

 scatteringFunction(i,:) = temp(end:-1:1);

end

% Normalize output.

maxVal = max(max(abs(scatteringFunction)));

scatteringFunction = scatteringFunction / maxVal;

% Compute range of tau and lambda to represent time delay and Doppler

% frequency for the axes.

[tauSamples lambdaSamples] = size(scatteringFunction(1:end,:));

tau = (0:tauSamples-1) / samplingRate * 1000 - 1;

lowerBound = floor(lambdaSamples / 2);

upperBound = floor(lambdaSamples / 2);

if (mod(lambdaSamples, 2) == 0)

 upperBound = upperBound - 1;

end

f = -lowerBound:upperBound;

lambda = (1 / chirpSignalSeconds / 2) * f / lowerBound;

Figure 2-12: MATLAB code to produce the scattering function of a channel.

30

Figure 2-13: Relationships between scattering function and derived correlation functions and power

spectra [Proakis 2008].

 Figure 2-12 provides MATLAB code that produces the scattering function of a channel.

Figure 2-13 shows the relationships between the scattering function and its derived views, which

are explained in greater detail in Sections 2.2.4 – 2.2.7.

2.2.4 Multipath Intensity Profile

The multipath intensity profile (MIP) or power delay profile P(τ) gives the average power

output as a function of time delay τ. It is computed by summing the power levels over the λ val-

ues of the scattering function, as in

Multipath Intensity Profile Doppler Power Spectrum

Spaced-Time Correlation Function Spaced-Frequency Correlation Function

31

 (2.11)

The MIP represents the delay spread of the channel. In general, an underwater multipath channel

causes a transmitted pulse to arrive at the receiver as distinct components spread out over time.

In digital communication systems without equalization, the length of this delay spread places a

lower bound on the duration of a symbol Ts, or an upper bound on the data rate of the system, that

must be used in order to avoid channel-induced ISI. Figure 2-14 provides MATLAB code to

compute the MIP from the scattering function obtained from the code in Figure 2-12.

%% Computes multipath intensity profile.

mip = sum(abs(scatteringFunction'));

% Compute range of tau in milliseconds to represent time delay.

len = length(mip);

tau = (0:len-1) * 1000/samplingRate - 1;

% Normalize output.

mip = mip / max(mip);

Figure 2-14: MATLAB code to produce the multipath intensity profile of a channel.

The mean excess delay and rms delay spreads of the MIP [Goldsmith 2005] are defined

as

 (2.12)

and

 (2.13)

where τ is the time delay of the multipath component within the MIP P(τ). The threshold level

might be set to -20 dB for computation of the mean excess delay and rms delay spreads, while the

maximum excess delay is typically computed for multipath components within 10 dB of the max-

imum level [Rappaport 2002].

32

2.2.5 Spaced-Frequency Correlation Function

The Fourier transform of the MIP yields the spaced-frequency correlation function

(SFCF), which provides a measure of the frequency coherence of the channel. This function in-

dicates the coherence bandwidth of the channel, which is a statistical measure of the range of fre-

quencies over which the channel passes all spectral components with approximately equal gain

and linear phase [Sklar 2001]. The SFCF essentially provides the same information as the MIP,

except that the SFCF describes the view from the frequency domain. If the data rate of the com-

munication system requires more bandwidth than the coherence bandwidth of the channel, fre-

quency-selective fading, another name for channel-induced ISI, would occur. On the other hand,

if the modulation bandwidth is less than the coherence bandwidth, frequency-nonselective or flat

fading would occur. Figure 2-15 provides the MATLAB code to produce the SFCF from the MIP

of a channel.

%% Computes spaced-frequency correlation function.

sfcf = abs(fftshift(fft(mip)));

% Normalize output.

sfcf = sfcf / max(sfcf);

% Compute range of frequencies for x-axis.

numPoints = length(sfcf);

lowerBound = floor(numPoints / 2);

upperBound = lowerBound;

if (mod(lambdaSamples, 2) == 0)

 upperBound = upperBound - 1;

end

f = -lowerBound:upperBound;

freq = (nyquistFreq / 2) * f / lowerBound;

Figure 2-15: MATLAB code to produce the spaced-frequency correlation function of a channel.

2.2.6 Doppler Power Spectrum

The Doppler power spectrum provides the signal intensity as a function of the Doppler

frequency λ. It is found by summing the power of spectral components over the time delay τ of

the scattering function, as seen in

33

 (2.14)

The range of frequencies over which the Doppler power spectrum is essentially nonzero is known

as the Doppler spread of the channel. By replacing τ with λ, Equations (2.12) and (2.13) can be

reapplied to calculate the Doppler shift and spread. The method, described in [Dessalermos

2005], provides the average and rms delay spreads in Hz, as in

 (2.15)

and

 (2.16)

where λ is the Doppler frequency in Hz and P(λ) is the power of the spectral component at fre-

quency λ. Figure 2-16 provides the MATLAB code to produce the Doppler power spectrum of a

channel.

%% Computes Doppler power spectrum.

dps = sum(abs(scatteringFunction));

% Compute range of frequencies for x-axis.

numPoints = length(dps);

lowerBound = floor(numPoints / 2);

upperBound = lowerBound;

if (mod(lambdaSamples, 2) == 0)

 upperBound = upperBound - 1;

end

f = -lowerBound:upperBound;

lambda = (1 / chirpSignalSeconds / 2) * f / lowerBound;

% Calculate Doppler shift and spread.

sumValue = sum(dps);

overallShift = sum(lambda .* dps) / sumValue;

overallSpread = sqrt(sum((lambda - overallShift).^2 .* dps) / sumValue);

% Smooth and normalize Doppler power spectrum before plotting.

dps = smooth(dps, 3);

dps = dps / max(dps);

Figure 2-16: MATLAB code to produce the Doppler power spectrum of a channel.

34

If the Doppler spread fd > W, where W is the bandwidth required for modulation, the

channel is referred to as fast fading, since the channel‟s conditions change within the duration of

a single symbol. Such channels typically require noncoherent or differentially coherent modula-

tion [Sklar 2001]. If W > fd, the channel is referred to as slow fading. If the baseband signal

bandwidth is much greater than fd, the effects of Doppler spread at the receiver are negligible

[Rappaport 2002].

2.2.7 Spaced-Time Correlation Function

The Fourier transform of the Doppler power spectrum provides the spaced-time correla-

tion function (STCF), which specifies the extent to which there is correlation between the chan-

nel‟s response to two sinusoids sent at different times. It provides the channel‟s coherence time

Tc, a measure of the expected time duration over which the channel‟s response is essentially inva-

riant [Sklar 2001]. The STCF presents the same data as the Doppler power spectrum, except that

is described from the time domain. If Ts > Tc, fast fading degradation occurs. If Tc > Ts, the

channel exhibits slow fading. Figure 2-17 provides the MATLAB code to produce the STCF

from the Doppler power spectrum of a channel.

%% Computes spaced-time correlation function.

stcf = abs(fftshift(fft(dps)));

% Normalize output.

stcf = stcf / max(stcf);

% Compute range of times for x-axis.

numPoints = length(stcf);

lowerBound = floor(numPoints / 2);

upperBound = lowerBound;

if (mod(lambdaSamples, 2) == 0)

 upperBound = upperBound - 1;

end

t = -lowerBound:upperBound;

time = (totalRecordedSeconds / 2) * t / lowerBound;

Figure 2-17: MATLAB code to produce the spaced-time correlation function of a channel.

35

2.3 Fading Distributions

In shallow water channels, a transmitted signal will arrive at the receiver at slightly dif-

ferent times via multiple paths. If a single pulse is transmitted over a multipath fading channel, it

will appear as a pulse train at the receiver, with each pulse in the train corresponding to a distinct

multipath component [Goldsmith 2005] which may or may not include the line-of-sight compo-

nent. In wireless channels, the amplitudes, phase shifts, and number of multipath components

vary if pulses are transmitted from a moving transmitter. Thus, they combine at the receiver ei-

ther constructively or destructively to form a resultant signal that can exhibit significant fluctua-

tions in amplitude and phase. Furthermore, (wind-induced) surface waves, current, and changes

in the salinity and temperature profile contribute to the time-varying nature of a shallow water

channel, which can also lead to amplitude and phase fluctuations of the received signal, even with

stationary apparatus.

There are three distributions commonly used to statistically model the fading channel,

namely Rayleigh [Strutt 1880], Rician [Rice 1944, 1945], and Nakagami-m [Nakagami 1960].

Rayleigh fading occurs when there are many objects in the environment that scatter the signal

before it arrives at the receiver. When the phase of the nth multipath component Φn(t) is uniform-

ly distributed, the in-phase and quadrature components rI(t) and rQ(t) are both zero mean Gaus-

sian random variables. If the variance is assumed to be σ
2
 for both rI and rQ, the signal envelope

 (2.17)

is Rayleigh distributed, as given by the pdf

 (2.18)

where 2σ
2
is the average received power of the signal [Goldsmith 2005].

http://en.wikipedia.org/wiki/Scattering

36

If the channel has a fixed line-of-sight (LOS) component, rI(t) and rQ(t) are not zero-

mean variables. In this case, the received signal is comprised of the superposition of a complex

Gaussian component and a LOS component. The signal envelope is then shown to have a Rician

distribution, given by

 (2.19)

where I0 is the zero-order modified Bessel function of the first kind, 2σ
2
 is the average power in

the non-LOS multipath component, and s
2
 is the power in the LOS component [Goldsmith 2005].

 The Rician K-factor is defined as the ratio of signal power in dominant component over

the (local-mean) scattered power [Linnartz 2009a], as in

 (2.20)

When K = 0 Rayleigh fading is present, and when K = ∞ the channel exhibits no fading. Thus, a

small K implies severe fading, and a large K implies relatively mild fading [Goldsmith 2005].

 Since some experimental data cannot be described by the Rayleigh and Rician distribu-

tions, the more general Nakagami-m distribution was developed. The Nakagami-m distribution is

given by

 (2.21)

where is the average received power and Г(∙) is the Gamma function. The Nakagami-m distri-

bution can model a range of fading channels from one-sided Gaussian fading (m = 1/2, worst-case

fading) to nonfading (m = ∞). m = 1 is a special case, equivalent to Rayleigh fading [Nakagami

1960]. Some papers state that the Rician distribution can be closely approximated by the Naka-

gami-m distribution when m > 1; however, other references including [Linnartz 2009] and [Ya-

coub 2005] argue against that claim.

37

 In practice, the fading characteristics of the channel can be determined in two ways. For

narrowband
6
 fading, a single sinusoid can be transmitted through the channel. The received sig-

nal should be run through a bandpass filter before computing its envelope. The amplitude values

of the envelope can then be fit to various distributions to determine the best match. For wideband

fading, the fluctuation in the amplitudes of a multipath component at time delay τ in the complex-

valued impulse response can be fit to the various distributions. It is possible for each multipath

component to exhibit a different fading distribution.

2.4 Underwater Channel – Office Test Environment

Channel characterization is not a simple procedure. Typically it involves taking two

boats, each equipped with power supplies, computers, an emitter and/or hydrophones, and a crew

of scientists, out to a body of water to gather data. While this procedure is necessary for thorough

characterization of a real underwater channel, it is cost-prohibitive for constructing and tweaking

the channel-sounding experiment. Therefore, a simple underwater channel can be created out of a

large tub filled with tap water and used for experiment design and prototyping. While it may not

exhibit the time-varying complexities found in real shallow water channels, it does possess a sig-

nificant amount of multipath propagation due to the close proximity of the hard walls of the tub.

In the Lieb building at Stevens Institute of Technology, a testbed has been created with

the following components: Rubbermaid® storage tub, OCEANEARS DRS-4 emitter [OCEA-

NEARS 2010], OCEANEARS DRS-2 hydrophone, custom-built fixed-gain amplifier, Lenovo

T60p laptop, and an M-Audio Transit USB recorder. Only one laptop was used in the experi-

ment, which simultaneously played and recorded the sounding signals. To ensure there was no

internal leakage of the playback signal in the microphone input, the T60p‟s onboard sound card

6 Narrowband refers to a situation where the bandwidth of the transmitted signal is less than the channel's coherence

bandwidth.

38

was used solely for transmission while the external M-Audio device was used for recording. The

sounding signals were played in Winamp 5.52 and recorded with Adobe Audition 3.0. The

OCEANEARS devices were affixed to the bottom of the table with duct tape and oriented so that

the large, flat surface of each transducer was facing the device on the opposite side of the tub.

The two transducers were separated by about 14 inches. Figure 2-18 depicts the layout of the

office test environment.

Figure 2-18: Underwater channel testbed inside office.

2.4.1 Sounding Signal

The sampling rate was set to 48 kHz for all experiments conducted in the office. A 50-

ms LFM chirp from 0 – 24 kHz was repeatedly used to sound the channel. Figure 2-19 shows the

autocorrelation function of the sounding signal in dB scale.

39

Figure 2-19: Envelope of autocorrelation of LFM Chirp 0-24 kHz, 50.0 ms.

2.4.2 Initial Tub Configuration

Figure 2-20: Initial configuration of underwater channel in office setup.

40

The tub, which is about 20.5 inches wide and 15.5 inches deep, was initially filled with

approximately 9.5 inches of water, as seen in Figure 2-20. The device on the left is the OCEA-

NEARS DRS-4 emitter; the one on the right is the OCEANEARS DRS-2 hydrophone.

2.4.2.1 Impulse Response

The impulse response of the tub over a span of 5 seconds appears in Figure 2-21. Each

second on the graph contains 20 impulse response estimates. Since the channel is time-invariant,

all impulse response estimates are nearly identical. Thus, when the collection of estimates is

viewed as a scaled image, it appears as a series of vertical columns. Columns in red represent

strong correlation at a specific time delay, while columns in blue represent low correlation. Val-

ues between the extremes are displayed in various colors of the spectrum present in the color bar

to the right of the graph.

Figure 2-21: Successive impulse response estimates of office test tub.

41

2.4.2.2 Scattering Function

Figure 2-22: Scattering function of office test tub.

The scattering function depicts significant multipath arrivals occurring for approximately

2.5 ms. There is no Doppler shift, since the devices were fixed, and no measureable spreading in

the frequency domain.

2.4.2.3 Multipath Intensity Profile

The delay spread of the channel appeared rather unconventional with many strong multi-

path components. While it is possible for an arrival of lesser intensity to precede the one with the

strongest amplitude, it is not common to find repeating sequences of weaker and then stronger

arrivals, like those shown in the multipath intensity profile in Figure 2-23. This phenomenon is

caused by the acoustic waves being reflected off the walls of the tub. Moreover, since the tub is

constructed out of hard plastic, very little acoustic energy is absorbed. Thus, the waves were re-

flected several times before losing intensity.

42

Figure 2-23: Multipath intensity profile of office test tub.

Table 2-1: Delay Spread (ms) of Multipath Intensity Profile Computed with -20 dB Threshold

Mean Excess Delay RMS Delay Spread Maximum Excess Delay (-10 dB)

1.1513 1.0945 2.6042

Table 2-2: Doppler Shift and Spread (Hz) of Strong Multipath Arrivals

 Time Delay (ms) Intensity Shift Spread

Arrival 1 0.000 0.6719 0.0000 0.0000

Arrival 2 0.146 1.0000 0.0000 0.0000

Arrival 3 0.458 0.2734 0.0000 0.0000

Arrival 4 0.625 0.4477 0.0000 0.0000

Arrival 5 0.750 0.6346 0.0000 0.0000

Arrival 6 0.854 0.7692 0.0000 0.0000

Arrival 7 1.313 0.3098 0.0000 0.0000

Arrival 8 1.708 0.2284 0.0000 0.0000

Arrival 9 1.896 0.2502 0.0000 0.0000

Arrival 10 2.542 0.2393 0.0000 0.0000

43

2.4.2.4 Spaced-Frequency Correlation Function

Figure 2-24: Spaced-frequency correlation function of office test tub.

Table 2-3: Coherence Bandwidth (Hz)

-3 dB -6 dB -10 dB

181 363 544

44

2.4.2.5 Doppler Power Spectrum

Figure 2-25: Doppler power spectrum of office test tub.

Table 2-4: Overall Doppler Shift and Spread (Hz)

Shift Spread

0.000 0.000

2.4.2.6 Spaced-Time Correlation Function

Table 2-5: Coherence Time (ms)

0.5 (-3 dB) 0.25 (-6 dB) 0.1 (-10 dB)

∞ ∞ ∞

45

Figure 2-26: Spaced-time correlation function of office test tub.

2.4.2.7 Analysis and Implications for Communication

The analysis of the channel sounding data, presented in Sections 2.4.2.1 through 2.4.2.6,

describes a channel that is time-invariant yet exhibits significant multipath propagation. A chan-

nel that is truly as time-invariant as a tub does not occur in nature, so this type of environment

should be used only to test underwater communications systems against a channel with signifi-

cant delay spread. Consequently, a zero-forcing equalizer can be employed. This type of equa-

lizer works by inverting the estimated channel response and applying the result to the incoming

signal stream. More complex adaptive filters can be used, but this particular channel won‟t pro-

vide any interesting test cases.

The amount of delay spread is directly proportional to the duration of a symbol Ts used in

a communication system that does not employ an equalizer. Some authors define Ts in terms of

the maximum excess delay Tm [Sklar 2001], while others use the rms delay spread [Rappaport

46

2002]. Assuming Tm is used, if Tm > Ts, the channel exhibits frequency-selective fading, which

results in channel-induced ISI. In this case, the communication system will need to perform

equalization to mitigate the distortion. If Ts > Tm, the channel exhibits flat fading, which does not

result in ISI. Tm = 2.6042 ms, reported in Table 2-1, implies the tub system can transmit up to

about 384 symbols per second and still avoid ISI. If the rms delay spread is used in the cal-

culation, when Ts the channel induces only negligible ISI. Assuming Ts is within an order

of magnitude of Ts implies Ts > 10 , and there will be some ISI which, depending

on the system, may or may not significantly degrade performance [Goldsmith 2005]. Using the

rms delay spread ,

which is about one-fourth the value computed using the maximum excess delay. Regardless of

which method is used, it is clear that the delay spread of the channel significantly decreases the

effective data rate of this channel to a maximum of at most a few hundred symbols per second.

Time-spreading can also be viewed from the frequency domain. The SFCF yields the

coherence bandwidth f of the channel. If W > f, where W is the bandwidth required for modula-

tion, the channel imposes frequency-selective degradation. If f > W, the channel exhibits flat fad-

ing. No universal relationship exists between the coherence bandwidth and delay spread [Sklar

2001; Rappaport 2002], since the exact relationship is a function of specific channel impulse res-

47

ponses and applied signals [Rappaport 2002]. It is also important to note that while the rms delay

spread calculation may predict some symbol rate, the actual bandwidth required by a certain type

of modulation at that symbol rate may exceed the coherence bandwidth of the channel. There-

fore, the achievable symbol rate for modulation within the given bandwidth may be even less than

predicted.

2.4.2.8 Details of Calculation

Figure 2-27: First attempt at spaced-time correlation function of office test tub.

The first attempt at computing the STCF of the office test tub produced the result shown

in Figure 2-27. It reveals a -3 dB coherence time of approximately 2.5 seconds, which is far

shorter than the theoretical value of infinity expected in a time-invariant system. From viewing

the successive impulse response estimates in Figure 2-21, it appears that the amplitudes of each

component in the impulse response remain constant over the entire duration of the test. There-

fore, one should expect the Doppler power spectrum to be a delta function, with all the power

occurring at the 0 Hz lambda frequency. The Fourier transform of such a delta function would

48

yield a flat STCF, with correlation values of 1 across the entire ∆t x-axis. However, the original

results contradict these expectations.

 In order to determine where the model breaks down, it is necessary to view the output of

each step in a controlled experiment. The magnitude values of the largest component of the im-

pulse response can be plotted to verify that they are approximately equal. Since the impulse re-

sponse is complex-valued, the magnitude of each sample is given by

 (2.22)

where xr denotes the real component and xi the imaginary component of the complex number x.

The mean value of the normalized magnitude over the 5-second test is 0.998 with a standard dev-

iation of 0.001. Thus, the fluctuations are indeed negligible, confirming a time-invariant channel.

Figure 2-28: Magnitude of the strongest impulse response tap over time.

The next step in the verification process is to analyze the output of the scattering function

at the iteration of the loop pertaining to the strongest impulse response tap. The algorithm in-

49

volves taking for the Fourier transform of the autocorrelation of the strongest impulse response

tap (across all 5 seconds of measurements). The result produces the Doppler power spectrum for

a given multipath component. Figure 2-29 shows the Doppler power spectrum of the strongest

multipath arrival in the tub. Note the small side lobes at the bottom of the spike. They are an

artifact of computing the FFT with a rectangular window, which has poor sideband attenuation of

only -13 dB [NI 2010c]. Figure 2-29 depicts the Doppler power spectrum of the strongest multi-

path arrival in linear scale; Figure 2-30 depicts it in dB scale.

Figure 2-29: Doppler power spectrum of strongest multipath arrival.

50

Figure 2-30: Doppler power spectrum of strongest multipath arrival in dB scale.

 It is not useful to apply a smoothing window to the signal before taking its Fourier trans-

form. While windowing affords greater side lobe attenuation, it increases the width of the main

lobe, thus decreasing the frequency resolution. The increase in the width of the main lobe with

attenuated side lobes has a similar effect on the resulting STCF as a narrow main lobe with signif-

icant side lobes – they yield a coherence time that is shorter than expected. In the case of this

time-invariant channel, it proves useful to simply eliminate the side lobes by zeroing out any part

of the scattering function that is less than 13 dB of the intensity of the strongest component.

 The main point in describing this observation and all the intermediate calculations is to

show that the WSSUS model used to describe the properties of a channel is just that – a model.

While artifacts of the computational methods are often not described in literature, they can have

significant effects on the results. The derived characterization functions and predictions about

symbol rates must be viewed as rough approximations.

51

2.4.3 Modified Tub Configuration

Figure 2-31: Final configuration of underwater channel in office setup. The walls of the tub were

lined with cardboard and the bottom was covered with sand to reduce multipath propagation.

Because of the extreme amount of multipath propagation present in the initial configura-

tion of the underwater channel in the office testbed, a second attempt was required to produce an

artificial channel that more realistically simulates natural bodies of water. In order to reduce the

number and intensity of reflections, the walls of the tub were lined with cardboard and the bottom

was covered with sand. Figure 2-31 depicts the altered configuration of the tub, which was used

for all subsequent measurements in this chapter and the communication experiments discussed in

Chapter 3.

52

2.4.3.1 Impulse Response

Figure 2-32: Successive impulse response estimates of modified office test tub.

2.4.3.2 Scattering Function

Figure 2-33: Scattering function of modified office test tub.

53

2.4.3.3 Multipath Intensity Profile

Figure 2-34: Multipath intensity profile of modified office test tub.

Table 2-6: Delay Spread (ms) of Multipath Intensity Profile Computed with -20 dB Threshold

Mean Excess Delay RMS Delay Spread Maximum Excess Delay (-10 dB)

0.1609 0.2327 0.2917

Table 2-7: Doppler Shift and Spread (Hz) of Strong Multipath Arrivals

 Time Delay (ms) Intensity Shift Spread

Arrival 1 0.000 1.0000 0.0000 0.0000

Arrival 2 0.188 0.4026 0.0000 0.0000

2.4.3.4 Spaced-Frequency Correlation Function

Table 2-8: Coherence Bandwidth (Hz)

-3 dB -6 dB -10 dB

1633 6170 11251

54

Figure 2-35: Spaced-frequency correlation function of modified office test tub.

2.4.3.5 Doppler Power Spectrum

Figure 2-36: Doppler power spectrum of modified office test tub.

55

Table 2-9: Overall Doppler Shift and Spread (Hz)

Shift Spread

0.000 0.000

2.4.3.6 Spaced-Time Correlation Function

Figure 2-37: Spaced-time correlation function of modified office test tub.

2.4.3.7 Analysis and Implications for Communication

The modified office test tub possesses a much more realistic multipath intensity profile.

There is one main arrival, followed by several reflections, only one of which is strong. There are

no longer groups of weaker arrivals followed by a strong component. As a result of the reduced

delay spread, the channel permits the transmission of signals with higher data rates. Using the

maximum excess delay as the lower bound for the duration of a symbol, the system can transmit

up to about 3428 symbols per second and still avoid ISI. The rms delay spread approach produc-

es a much smaller rate of only approximately 430 symbols per second.

56

2.5 Underwater Channel – Hudson River Estuary

2.5.1 Experiment

Figure 2-38: Test site for channel sounding experiment.

The Maritime Security Laboratory (MSL) at Stevens Institute of Technology conducted a

field test on August 21, 2008, in the Hudson River estuary adjacent to its campus, as shown in

Figure 2-38. Two boats were used, one for emitting signals – the Phoenix – and the other for re-

cording them – the Savitsky. The Phoenix was also equipped with a hydrophone to record the

emitted signals at a distance of 1 meter from the transducer for later reference. The computer

system on the Phoenix used the NI USB-6221 [NI 2010b] data acquisition (DAQ) board; the sys-

tem on the Savitsky utilized the NI PCI-6123 [NI 2010a]. All reference and recorded signals

were created at 200 ksamples/second. A custom ceramic transducer emitted the signals, while

ITC-6050C hydrophones [ITC 2010] were used for reception.

The channel was about 3 meters deep, and sounding experiments were performed at dis-

tances of 505 and 200 meters. The emitter was placed 1 meter below the surface; hydrophones

57

were placed 60 cm from the bottom. The boats were anchored and motors turned off while data

were gathered. Each test consisted of taking CTD
7
 measurements prior to channel sounding, re-

cording 30 seconds of ambient noise, playing a comb signal containing 5 sinusoidal components

– 35, 45, 60, 75, and 85 kHz – for 1 minute, and repeatedly emitting a 50-ms LFM chirp signal

spanning 20-100 kHz for 30 seconds.

2.5.2 Sounding Signal

Analysis of prior measurements in the Hudson River estuary revealed significant noise

below 20 kHz and a very short coherence time, which facilitated the choice of sounding signal for

this test. As stated in Section 2.2.1, the LFM chirp signal is a good choice for a sounding signal,

since it possesses good autocorrelation properties as to closely approximate the Dirac delta func-

tion. It is known that the best autocorrelation function for a LFM chirp signal is obtained when

chirping from 0 Hz up to the Nyquist frequency. However, because of the Hudson‟s noise in

lower frequency bands and the emitter‟s lack of low frequency response, 20 kHz was chosen as

the starting frequency for the chirp signal.

2.5.3 Environmental Conditions

The field test in the Hudson River estuary was conducted on the afternoon of August 21,

2008. Environmental conditions were recorded at the Castle Point Buoy, at 40.74348° latitude

and -74.02263° latitude, and downloaded upon the completion of the experiment from the website

for the Urban Ocean Observatory at the Center for Maritime Systems [NYHOPS 2009]. The 505-

meter test was started at 5:14 P.M. At that time, the temperature was 76°F with 55% relative hu-

midity, the wind speed was about 10 knots, and the wind direction was about 159° [WIS 2009].

Medwin‟s expression for sound velocity in meters/second

7 A CTD – an acronym for Conductivity, Temperature, and Depth – is a sensor used to determine essential physical

properties of sea water.

58

(2.23)

where D is the depth in meters, S is the salinity in parts per thousand (ppt), and T is the tempera-

ture in degrees Celsius [Urick 1996], was applied to the CTD measurements taken at the start of

the test. Other expressions for sound velocity exist; however, the salinity values obtained in the

test fall outside the range of acceptable input values for these expressions. Figure 2-39 shows the

temperature, salinity, and derived sound velocity of the water column in the 505-meter test. Since

the numeric difference between practical salinity unit (psu) and ppt is small, psu values were used

in place of ppt values while generating this graph.

Figure 2-39: Sound velocity profile for 505-meter channel.

The 200-meter test was started at 6:04 P.M. At that time, the temperature was 75°F with

57% relative humidity, the wind speed was about 8 knots, and the wind direction was still about

159°. Following the same procedure as before, the CTD measurements resulted in the sound ve-

locity profile shown in Figure 2-40.

59

Figure 2-40: Sound velocity profile for 200-meter channel.

Figure 2-41: PSD of ambient noise in Hudson River estuary.

Ambient noise was recorded for 30 seconds during both tests before any signals were

emitted. The power spectral density (PSD) of noise was estimated via a Welch periodogram

technique based on a 256-point FFT together with a Hanning window and no overlap. Figure

60

2-41 shows the PSD of noise in the Hudson River estuary captured at 5:24 and 6:42 P.M.

2.5.4 Time-Variant Impulse Response

The time-varying complex-valued low-pass impulse response c(τ; t) of the underwater

channel was captured via same procedure as outlined in Section 2.2.2 but with two additional

steps. The complete method is as follows:

1. The 50-ms chirp signals were recorded 1 meter from the emitter and either 200 or 505 me-

ters away (depending on the test) where the Savitsky was anchored.

2. The received signal and 1-meter reference signal were run through a 10
th
 order high-pass

Butterworth filter at 20 kHz to eliminate out-of-band noise.

3. One chirp was extracted from the 1-meter reference signal, accurate to the sample.

4. The imaginary part of the reference chirp signal was obtained via the Hilbert transform.

5. The received signal was cross-correlated with the complex conjugate of the reference chip

signal.

There are several experimental issues worth describing in more detail. The standard

technique is to apply matched filtering to the received signal with the original waveform sent to

the emitter. While this approach results in the best autocorrelation function for a given chirp sig-

nal, it unfairly distributes weight to frequencies that were not emitted with equal amplitudes, as in

the case when the frequency response of the emitter is not flat. In this situation, the derived im-

pulse response estimates contain higher levels of noise correlation.

61

Figure 2-42: PSD of chirp signal at 1m (frequency response of emitter).

The custom transducer used in this experiment does not exhibit a flat response over the

20-100 kHz band. Figure 2-42 shows the PSD of the chirp signal that it emitted. The envelope of

the autocorrelation function of the original chirp waveform with a flat response has a narrow

main lobe and negligible side lobes, as shown in Figure 2-43. On the other hand, as shown in

Figure 2-44, the autocorrelation function of the chirp signal produced by the custom transducer

has a wider main lobe and stronger side lobes, averaging about -40 dB across the 10 ms spread.

However, since the signal was received with high SNR (19 dB < SNR < 58 dB), the distortion

introduced by the side lobes on the impulse response estimates was minimal.

62

Figure 2-43: Envelope of original chirp waveform autocorrelation function.

Figure 2-44: Envelope of emitted chirp waveform autocorrelation function.

Figure 2-45 shows 30 seconds of impulse response estimates c(τ; t) of the Hudson River

estuary at the 200-meter distance. Fading is present, but it appears that there are one or possibly

two line-of-sight arrivals. Figure 2-46 shows the time evolution of impulse response estimates

observed over the 505-meter channel. While there is significant fluctuation in the amount of cor-

63

relation, the strongest correlation always occurs within a 0.5-ms window. Three multipath com-

ponents are present, though each has been subjected to periods of deep fading.

Figure 2-45: Successive time-variant impulse response estimates of Hudson at 200m.

Figure 2-46: Successive time-variant impulse response estimates of Hudson at 505m.

64

2.5.5 Scattering Function

Figure 2-47: Scattering function of Hudson at 200m.

Figure 2-48: Scattering function of Hudson at 505m.

65

2.5.6 Multipath Intensity Profile

Figure 2-49: Multipath intensity profile of Hudson at 200m.

Figure 2-50: Multipath intensity profile of Hudson at 505m.

66

The MIP of the 200-meter channel, seen in Figure 2-49, appears to have only one arrival.

However, upon enlarging the region around the peak, it is evident that there are two distinct arriv-

als separated by 25 µs. The MIP of the 505-meter channel, shown in Figure 2-50, reveals three

distinct arrivals spanning slightly less than 0.5 ms.

Table 2-10: Delay Spread (ms) of Multipath Intensity Profile Computed with -20 dB Threshold

 Mean Excess Delay RMS Delay Spread Maximum Excess Delay (-10 dB)

200m 0.0907 0.1478 0.1800

505m 0.1789 0.1636 0.4150

Table 2-11: Doppler Shift and Spread (Hz) of Strong Multipath Arrivals

 200m 505m

 Time (ms) Intensity Shift Spread Time (ms) Intensity Shift Spread

Arrival 1 0.000 0.8136 -0.1945 2.6790 0.000 1.0000 -0.3642 2.8315

Arrival 2 0.025 1.0000 -0.2588 2.6948 0.105 0.4033 -0.3667 3.0616

Arrival 3 – – – – 0.205 0.5041 -0.4556 3.0057

2.5.7 Spaced-Frequency Correlation Function

Figure 2-51: Spaced-frequency correlation function of Hudson at 200m.

67

Figure 2-52: Spaced-frequency correlation function of Hudson at 505m.

Table 2-12: Coherence Bandwidth (Hz)

 -3 dB -6 dB -10 dB

200m 2331 8160 12490

505m 1166 1665 2165

Since the multipath spread of the channel is longer at 505 meters than it is at 200 meters,

the coherence bandwidth of the 505-meter channel is less than that of the 200-meter channel. In

fact, for the correlation between two sinusoids to remain within 3 dB of each other (correlation ≥

0.5), the coherence bandwidth is reduced by half when going from 200 meters to 505 meters. As

an aside, it should be noted that the correlation tapers off in last 10 kHz on each side of the graph

in both graphs. This property is expected, since the channel was sounded over 80 kHz of the 100

kHz made possible with the 200 kHz sampling rate. Thus, there is no data for the remaining 20

kHz.

68

2.5.8 Doppler Power Spectrum

Figure 2-53: Doppler power spectrum of Hudson at 200m.

Figure 2-54: Doppler power spectrum of Hudson at 505m.

69

Table 2-13: Overall Doppler Shift and Spread (Hz)

 Shift Spread

200m -0.2357 3.3231

505m -0.3381 3.3843

There is nothing remarkable about the Doppler power spectrum at either distance. The

majority of the power is virtually centered on the 0 Hz lambda frequency, with some power dis-

tributed in the negative frequency range.

2.5.9 Spaced-Time Correlation Function

Figure 2-55: Spaced-time correlation function of Hudson at 200m.

70

Figure 2-56: Spaced-time correlation function of Hudson at 505m.

Table 2-14: Coherence Time (ms)

 0.5 (-3dB) 0.25 (-6dB) 0.1 (-10 dB)

200m 50 400 699

505m 50 150 500

The coherence time of the channel at either distance is extremely short. In fact, the dura-

tion over which two sinusoids remain within 3 dB of each other (correlation ≥ 0.5) is only 50 ms.

2.5.10 Fading Characteristics

The comb signal containing 5 sinusoids – 35, 45, 60, 75, and 85 kHz, where the

frequencies were chosen so that no harmonics overlap – has been analyzed to determine the type

of narrowband fading that is present in the Hudson River estuary via the following procedure:

1) A 10
th
 order band-pass Butterworth filter with a passband of 2 kHz was applied to each of

the tones.

2) The analytic signal x was obtained from the filtered data via the Hilbert transform.

3) The envelope of the signal was computed by taking its magnitude, as in Equation (2.22).

71

4) The fading envelope was normalized to zero mean.

Figure 2-57 shows the channel-induced amplitude fluctuations of the five sinusoidal

components in the comb signal as well as the strongest component of the successive impulse re-

sponse estimates. The fluctuations in the received signal level are huge, especially in the lower

frequency bands, varying more the 80 dB during in a 10-second interval. The fluctuations in the

amplitude of the wideband signal are less severe, with differences of 20 dB over 30 seconds.

Since the channel was sounded 20 times per second, 30 seconds yields 600 impulse response es-

timates and, therefore, 600 amplitude values. Even though 30 seconds is three times greater than

the analyzed section of the comb signal, it must be understood that the 10-second comb signal

contains 2 million amplitude values and, hence, affords much greater resolution.

72

Figure 2-57: Fading envelopes in Hudson at 200m.

73

Figure 2-58: Fading envelopes in Hudson at 505m.

Figure 2-58 shows the amplitude fluctuations over the 505-meter channel. The severity

of the fading is much stronger at the increased distance, especially with the 35 kHz and 45 kHz

74

sinusoids. Even the wideband signal exhibits fluctuations of some 40 dB, although as in the 200-

meter channel, it still fared far better than any narrowband component.

Figure 2-59: CDF for fading measurements at

200m.

Figure 2-60: CDF for fading measurements at

505m.

Figures 2-59 and 2-60 show the cumulative distribution of amplitude levels of each of the

5 sinusoids taken over the full minute of data. It appears that at both distances the channel af-

fected all the sinusoids equally, with approximately a tenfold decrease in the probability for every

10 dB decrease in the signal level, at least for down to -50 dB relative to the mean level. It

should be noted, though, that the confidence intervals for points below -50 dB become signifi-

cantly reduced, as there are relatively few low-amplitude samples in the 1-minute recording.

Maximum likelihood estimation was used to fit the data to the Rayleigh, Rice, and Naka-

gami-m distributions, which are commonly used to describe fading channels, and to other less

likely potential distributions, including gamma, beta, and lognormal. The goodness of fit was

tested with three different metrics. When working with the comb signal, the histogram of signal

levels was divided into 100 bins. The histogram of the strongest impulse response tap, however,

was divided into only 40 bins because there were significantly fewer data points. P is the proba-

bility distribution of the measurements; Q is the probability distribution of the fit. The first me-

tric is Kullback-Leibler divergence [Kullback 1951], DKL, defined as

75

 (2.24)

The second metric is the Bhattacharyya distance [Bhattacharyya 1943], DB, defined as

 (2.25)

where BC is the Bhattacharyya coefficient, . The third and final metric, DCRM, is

one based on the Bhattacharyya coefficient, proposed by Comaniciu, Ramesh, and Meer [Com-

aniciu 2003], defined as

 (2.26)

Figures 2-61 and 2-62 show the histograms of the measurements and the curves corres-

ponding to each of the six distributions for the 200-meter and 505-meter channels, respectively.

In each figure, the first five subplots depict the probability distribution functions that correspond

to the fading of each narrowband sinusoidal component in the comb signal. The last subplot

shows the fading of strongest component of the successive impulse response estimates.

Tables 2-15 through 2-26 provide the values of the three metrics as well as the distribu-

tion-specific parameters obtained while fitting the distributions to the data. For each of the three

metrics, lower values indicate less divergence from the actual data. In the tables, the best match

for each metric is highlighted in yellow.

76

Figure 2-61: PDF of measurements and fits at 200m.

77

Table 2-15: Goodness of Fits, 200m, 35 kHz Sinusoid

 DKL DB DCRM Parameters

Beta 0.0964 0.0138 0.0974 [alpha = 4.2381, beta = 54.8056]

Gamma 0.1028 0.0161 0.1054 [alpha = 4.5298, beta = 0.0159]

Lognormal 0.4209 0.0434 0.1722 [mu = -2.7483, sigma = 0.5269]

Nakagami-m 0.0497 0.0051 0.0591 [m = 1.3867, omega = 0.0061]

Rayleigh 0.0774 0.0183 0.1123 [sigma = 0.0554]

Rice 0.0395 0.0026 0.0423 [s = 0.0602, sigma = 0.0354, K = 1.4411]

Table 2-16: Goodness of Fits, 200m, 45 kHz Sinusoid

 DKL DB DCRM Parameters

Beta 0.0771 0.0189 0.1142 [alpha = 4.2516, beta = 12.4813]

Gamma 0.1273 0.0325 0.1492 [alpha = 5.3128, beta = 0.0481]

Lognormal 0.2731 0.0653 0.2104 [mu = -1.4621, sigma = 0.4930]

Nakagami-m 0.0582 0.0147 0.1008 [m = 1.6674, omega = 0.0746]

Rayleigh 0.1547 0.0447 0.1746 [sigma = 0.1932]

Rice 0.0232 0.0058 0.0632 [s = 0.2300, sigma = 0.1042, K = 2.4372]

Table 2-17: Goodness of Fits, 200m, 60 kHz Sinusoid

 DKL DB DCRM Parameters

Beta 0.0284 0.0066 0.0675 [alpha = 2.6273, beta = 4.8210]

Gamma 0.0897 0.0226 0.1248 [alpha = 3.7575, beta = 0.0944]

Lognormal 0.2330 0.0470 0.1791 [mu = -1.1756, sigma = 0.5977]

Nakagami-m 0.0352 0.0090 0.0789 [m = 1.2156, omega = 0.1516]

Rayleigh 0.0494 0.0137 0.0973 [sigma = 0.2753]

Rice 0.0186 0.0047 0.0569 [s = 0.2883, sigma = 0.1850, K = 1.2142]

Table 2-18: Goodness of Fits, 200m, 75 kHz Sinusoid

 DKL DB DCRM Parameters

Beta 0.0243 0.0054 0.0612 [alpha = 1.8600, beta = 3.5367]

Gamma 0.0299 0.0066 0.0677 [alpha = 2.8129, beta = 0.1215]

Lognormal 0.1345 0.0219 0.1227 [mu = -1.2620, sigma = 0.6885]

Nakagami-m 0.0110 0.0027 0.0430 [m = 0.9149, omega = 0.1516]

Rayleigh 0.0162 0.0037 0.0509 [sigma = 0.2753]

Rice 0.0162 0.0037 0.0509 [s = 0.0004, sigma = 0.2753, K = 0.0000]

78

Table 2-19: Goodness of Fits, 200m, 85 kHz Sinusoid

 DKL DB DCRM Parameters

Beta 0.0185 0.0041 0.0536 [alpha = 2.1983, beta = 3.6467]

Gamma 0.0385 0.0095 0.0809 [alpha = 3.4408, beta = 0.1089]

Lognormal 0.1118 0.0229 0.1255 [mu = -1.1343, sigma = 0.6063]

Nakagami-m 0.0178 0.0045 0.0560 [m = 1.0919, omega = 0.1746]

Rayleigh 0.0198 0.0051 0.0596 [sigma = 0.2955]

Rice 0.0167 0.0043 0.0543 [s = 0.2565, sigma = 0.2332, K = 0.6050]

Table 2-20: Goodness of Fits, 200m, Strongest Impulse Response Tap

 DKL DB DCRM Parameters

Beta 0.0917 0.0222 0.1237 [alpha = 2.8064, beta = 3.4825]

Gamma 0.1186 0.0307 0.1450 [alpha = 4.9964, beta = 0.0890]

Lognormal 0.1940 0.0475 0.1800 [mu = -0.9139, sigma = 0.4981]

Nakagami-m 0.0828 0.0220 0.1229 [m = 1.5415, omega = 0.2300]

Rayleigh 0.1280 0.0364 0.1579 [sigma = 0.3391]

Rice 0.0688 0.0182 0.1119 [s = 0.3904, sigma = 0.1969, K = 1.9654]

The Rician distribution is the best match for most of the test cases at 200 meters. In the

narrowband trials, it is the consistently the best fit for the fading of the 35, 45, and 60 kHz tones.

Moreover, the Rician distribution is also the best fit for wideband fading according to all three

goodness of fit metrics. At 75 kHz, the channel exhibits Nakagami-m fading, where m = 0.9149

< 1.0 indicates the fading is more severe than Rayleigh. At 85 kHz, the fading appears to be Ri-

cian, at least according to Kullback-Leibler divergence. The other two metrics give the Beta dis-

tribution a narrow lead over the Rician distribution, although m = 1.0919 > 1.0 in the Nakagami-

m distribution indicates that the fading is at least less severe than Rayleigh. (Recall that not all

sources agree that Nakagami-m can model the Rician distribution.)

79

Figure 2-62: PDF of measurements and fits at 505m.

80

Table 2-21: Goodness of Fits, 505m, 35 kHz Sinusoid

 DKL DB DCRM Parameters

Beta 0.0287 0.0034 0.0486 [alpha = 2.4336, beta = 18.3310]

Gamma 0.0260 0.0034 0.0484 [alpha = 2.7512, beta = 0.0425]

Lognormal 0.2025 0.0193 0.1154 [mu = -2.3389, sigma = 0.6772]

Nakagami-m 0.0337 0.0047 0.0569 [m = 0.8529, omega = 0.0185]

Rayleigh 0.0517 0.0066 0.0677 [sigma = 0.0963]

Rice 0.0517 0.0066 0.0677 [s = 0.0001, sigma = 0.0963, K = 0.0000]

Table 2-22: Goodness of Fits, 505m, 45 kHz Sinusoid

 DKL DB DCRM Parameters

Beta 0.0727 0.0089 0.0782 [alpha = 2.2509, beta = 36.9124]

Gamma 0.0689 0.0081 0.0747 [alpha = 2.4133, beta = 0.0237]

Lognormal 0.4863 0.0138 0.0975 [mu = -3.0819, sigma = 0.7095]

Nakagami-m 0.0939 0.0127 0.0936 [m = 0.7174, omega = 0.0049]

Rayleigh 0.1947 0.0240 0.1284 [sigma = 0.0494]

Rice 0.1947 0.0240 0.1284 [s = 0.0000, sigma = 0.0494, K = 0.0000]

Table 2-23: Goodness of Fits, 505m, 60 kHz Sinusoid

 DKL DB DCRM Parameters

Beta 0.0092 0.0017 0.0347 [alpha = 2.1391, beta = 6.2493]

Gamma 0.0123 0.0024 0.0407 [alpha = 2.8385, beta = 0.0894]

Lognormal 0.1090 0.0178 0.1108 [mu = -1.5573, sigma = 0.6685]

Nakagami-m 0.0066 0.0016 0.0332 [m = 0.8998, omega = 0.0850]

Rayleigh 0.0128 0.0029 0.0450 [sigma = 0.2062]

Rice 0.0128 0.0029 0.0450 [s = 0.0002, sigma = 0.2062, K = 0.0000]

Table 2-24: Goodness of Fits, 505m, 75 kHz Sinusoid

 DKL DB DCRM Parameters

Beta 0.0266 0.0054 0.0614 [alpha = 2.9233, beta = 10.3616]

Gamma 0.0523 0.0124 0.0924 [alpha = 3.6043, beta = 0.0612]

Lognormal 0.2121 0.0402 0.1658 [mu = -1.6565, sigma = 0.6007]

Nakagami-m 0.0172 0.0040 0.0524 [m = 1.1366, omega = 0.0601]

Rayleigh 0.0232 0.0062 0.0656 [sigma = 0.1733]

Rice 0.0169 0.0040 0.0526 [s = 0.1564, sigma = 0.1334, K = 0.6878]

81

Table 2-25: Goodness of Fits, 505m, 85 kHz Sinusoid

 DKL DB DCRM Parameters

Beta 0.0221 0.0045 0.0555 [alpha = 2.6744, beta = 10.5769]

Gamma 0.0174 0.0034 0.0489 [alpha = 3.3415, beta = 0.0602]

Lognormal 0.1103 0.0182 0.1121 [mu = -1.7606, sigma = 0.6046]

Nakagami-m 0.0265 0.0058 0.0634 [m = 1.0163, omega = 0.0521]

Rayleigh 0.0265 0.0059 0.0638 [sigma = 0.1614]

Rice 0.0265 0.0059 0.0638 [s = 0.0001, sigma = 0.1614, K = 0.0000]

Table 2-26: Goodness of Fits, 505m, Strongest Impulse Response Tap

 DKL DB DCRM Parameters

Beta 0.1272 0.0294 0.1421 [alpha = 1.7154, beta = 4.2336]

Gamma 0.0670 0.0222 0.1235 [alpha = 2.5826, beta = 0.1087]

Lognormal 0.1678 0.0376 0.1604 [mu = -1.4761, sigma = 0.7098]

Nakagami-m 0.0737 0.0222 0.1235 [m = 0.8219, omega = 0.1072]

Rayleigh 0.0951 0.0247 0.1304 [sigma = 0.2316]

Rice 0.0951 0.0247 0.1304 [s = 0.0001, sigma = 0.2316, K = 0.0000]

At 505 meters, the fading becomes noticeably more severe. The Gamma distribution is

the best fit for the fading of the individual 35, 45, and 85 kHz tones as well as for wideband fad-

ing. At 60 kHz, the best fit is with the Nakagami-m distribution, where m = 0.8998 < 1.0 implies

fading worse than Rayleigh. At 75 kHz, it‟s a tossup between Rician and Nakagami-m, where m

= 1.1366. Interestingly, the fading at 75 kHz is less severe at 505 meters than it is at 200 meters.

2.5.11 Analysis and Implications for Communication

The maximum excess delay of the 200-meter channel is less than half that of the 505-

meter channel, as reported in Table 2-10. Using the maximum excess delay as the lower bound

for the duration of a symbol, the system can avoid ISI while transmitting up to about 5555 and

2410 symbols per second at 200 and 505 meters, respectively. The difference between the rms

delay spread of the 200- and 505-meter channels is significantly less than the difference between

the maximum excess delay values. Therefore, the estimated symbol rates based on the rms delay

82

spreads are expected to be closer together. At 200 meters, the predicted symbol rate is 677, while

at 505 meters that number drops to 611 symbols per second.

 The -3 dB coherence time of the Hudson at either distance is 50 ms. Unless the commu-

nication system is operating at a mere 20 symbols per second, the duration of a symbol will be

significantly shorter than the coherence time. Thus, the channel is said to be one of slow fading.

At 200 meters, the Hudson exhibits primarily Ricean fading. At 505 meters, the fading becomes

more severe than Rayleigh, as the Gamma distribution is the best fit for most of the tests.

 Given the channel‟s fading characteristics, any amplitude-based modulation technique

should be avoided as its performance is expected to degrade under these conditions. If the re-

quired data rate results in frequency-selective fading across the channel, adaptive equalization,

spread spectrum (either direct-sequence or frequency-hopping), OFDM (orthogonal frequency-

division multiplexing), or pilot signal techniques can be considered [Sklar 2001]. Diversity tech-

niques and the use of error-correcting codes can be exploited to reduce errors when the channel is

in a deep fade. The most straightforward approach is to employ frequency diversity, that is, to

transmit the same information on multiple carriers, where the separation between carriers equals

or exceeds the channel‟s coherence bandwidth [Proakis 2008]. If computational complexity is

not an issue, the optimum demodulator for use in a fading multipath channel, called the RAKE

receiver [Proakis 2008], can be employed. The RAKE receiver decodes separate multipath com-

ponents and combines the output of all the correlators, thus providing higher SNR at the decision

stage.

 The best approach for determining which of the aforementioned techniques works best is

to conduct a field test in the channel of interest. Pregenerated signals can be transmitted through

the channel, recorded, and returned to the lab for offline processing. These signals should include

at least the following:

83

1) M-ary FSK, as in the Benthos modems [Benthos 2010].

2) PSK and QPSK (and perhaps even 8-PSK) in several frequency bands and at several

symbol rates that clearly result in frequency-selective fading for some trials and flat fad-

ing for others.

3) Direct-sequence spread-spectrum on top of PSK (DSSS/BPSK).

4) Frequency-hopping (FH) PSK and FH-FSK, as in the Micro-Modem [Freitag 2005].

5) OFDM with PSK and/or QPSK modulated carriers.

6) Any of 1-5 preceded by a pilot signal (LFM chirp or other signal with good autocorrela-

tion properties) in the relevant frequency band that can be used to estimate the channel.

7) Any of 1-5 with error-correcting codes such as Reed-Solomon or Turbo codes.

The time-invariant office test environment is too simplistic for testing these different techniques.

The most straightforward approach of using a pilot signal to estimate the channel and applying a

zero-forcing equalizer to the received signal actually works quite well, allowing for data rates of

up to 6 kbps with binary FSK. The SNR in the tub is very high and the time-invariant characte-

ristic implies that the channel‟s characteristics will remain the same over the length of a symbol,

packet, and even packet train. Testing the complicated Hudson River estuary would be a more

interesting project. In fact, it was part of the research plan until funding ran out. Therefore, since

further experiments could not be conducted, related work on PHY layer techniques is presented

here with a high-level discussion of expected results.

 M-ary FSK works by transmitting M tones, where M is a multiple of two. Using more

tones allows the modem to pack more bits in a symbol. With binary FSK, one tone represents a

„0‟ and the other a „1‟. With 4-FSK, each of the four tones can represent two bits at once – „00‟,

„01‟, „10‟, and „11‟. 8-FSK can transmit three bits per symbol, and so on. The advantage of this

technique for higher values of M is that the symbol duration can exceed the multipath spread of

84

the channel and, hence, avoid ISI while offering the same data rate as a lower M value with faster

signaling. Early work by a collaboration of Datasonics (later acquired by Benthos), Delphi

Communications Systems, and Naval Command, Control & Ocean Surveillance Center, RDT&E

Division (NRaD) describes a variation of M-ary FSK implemented in the type-A telesonar mod-

em [Scussel 1997]. The previous ATM-850 modem uses 1-of-4 MFSK, where one tone in a

group of four encodes two bits at a time. Independent groups of four tones are transmitted simul-

taneously to transmit up to 16 bits during the symbol time of 12.8 ms. The new modem has a

symbol time of 25 ms, allowing for finer resolution in the frequency domain, with tones spaced

by only 40 Hz. As a result, the type-A modem can use 128 frequencies in the same bandwidth,

transmitting up to 60 bits in one symbol frame. In general, M-ary FSK is considered to be ma-

ture, reliable technology that works well in shallow water environments with multipath propaga-

tion.

 The WHOI (Woods Hole Oceanographic Institution) introduced a version of the Micro-

Modem in 2005 that supports both FH-FSK and PSK data transmission. While the default data

rate on this modem is listed at 80 bps [Freitag 2005], FH-FSK can transmit at higher speeds. In a

single-user system, frequency hopping is exploited by allowing the channel to clear between suc-

cessive transmissions in the same frequency bin, thus eliminating ISI at the receiver [Parrish

2007]. The duration of a symbol can be shorter than multipath spread, allowing for higher data

rates, as long as the amount of time between each repeated use of a frequency bin exceeds the

delay spread. As an added advantage, frequency hopping can be exploited in a multi-user envi-

ronment in order to share the available bandwidth by allowing a number of users to transmit si-

multaneously on different hopping patterns [Parrish 2007].

 The PSK data transmission on the Micro-Modem offers much higher data rates of 300-

5000 bps [Freitag 2005]. Micro-Modems equipped with the floating-point coprocessor can re-

85

ceive the PSK transmissions via a DFE. By 2008 the Micro-Modem had been enhanced with

QPSK signaling and Reed-Solomon codes [Freitag 2008]. The implementation of the DFE is

similar to what Stojanovic described in her original work [Stojanovic 1993, 1994] except that the

filter coefficients are updated with the adaptive step-size LMS
8
 algorithm instead of RLS

9
 and

there is only one phase-locked loop
10

 (PLL) applied after the feedforward channels are combined

instead of one for each hydrophone channel. The modem was tested in Narragansett Bay, very

close to the University of Rhode Island Graduate School of Oceanography facility in the March

RACE 2008 experiment and again in a shallow area of the Atlantic Ocean south of Cape Cod in

Massachusetts in the October SPACE 2008 experiment. The water depth was very shallow in

both cases – 10 meters for RACE 2008 and less than 15 meters for SPACE 2008. The receiver

arrays contained 12 hydrophone elements, 4 of which were selected to maximize the aperture.

Under this experimental setup, which resulted in approximately 5000 bps burst throughput in the

actual modem, it was observed that packets were decoded correctly when symbol SNR levels

greater than 7 dB were obtained at the output of the equalizer. Thus, it seems that high data rate

phase-coherent communication is indeed possible in shallow water environments when coupled

with the complexity of a DFE, error-correcting codes, and a receiver array.

 Sozer et al. described a communication system based on direct-sequence spread spectrum

signaling with a RAKE filter at the receiver [Sozer 1999]. In an experiment performed in the

Baltic Sea in March 1999, the authors ran two trials in a 3 km channel, where the second was per-

formed with 12 dB less output power than the first. They estimated the multipath spread of the

channel to be about 2.5 ms, for which 6 RAKE receiver taps were required, and found no errors

out of 200 bits in either trial.

8 The least mean squares (LMS) algorithm is used in adaptive filters to find the filter coefficients that correspond to

producing the least mean squares of the error signal (difference between the desired and the actual signal).
9 The recursive least squares (RLS) algorithm is used in adaptive filters to find the filter coefficients that correspond to

recursively producing the least squares (minimum of the sum of the absolute squared) of the error signal.
10 A phase-locked loop, implemented in either hardware or software, tracks changes to the incoming signal‟s phase.

86

Yang and Yang analyzed direct-sequence spread-spectrum signals collected from the

TREX04 experiment to determine the BER as a function of the input SNR for a single receiver

[Yang 2008]. The experiment was conducted in April 2004, off the coast of New Jersey, south-

west of the Hudson Canyon. The DSSS signals were centered at 17 kHz and had a bandwidth of

4 kHz. The transmitted symbols were spread with an m-sequence of 511 chips using BPSK mod-

ulation. The symbol duration was 127.8 ms, much longer than the channel‟s multipath delay of

25 ms, which translated to a data rate of approximately 8 bps. A total of 1160 packets of data

were generated by adding ambient noise data collected at sea to the signal data (in post-

processing) to create signals with different input SNR, some as low as -15 dB. The authors ana-

lyzed two methods, both of which used a time-updated channel impulse response estimate as a

matched filter to mitigate the multipath-induced interferences. The first method required an inde-

pendent estimate of the time-varying channel impulse response function; the second method used

the channel impulse response estimated from the previous symbol as the matched filter. The first

method produced an average BER <10
-2

 for input-SNR as low as -12 dB, while the second me-

thod yielded similar performance for input-SNR as low as -8 dB. Thus, DSSS can be useful in

situations where noise is dominant or covert passing of short messages is required. It is clear,

though, that the data rate will be significantly compromised.

Stojanovic and Freitag demonstrated promising results for a multi-user system with di-

rect-sequence CDMA
11

 [Stojanovic 2006]. Performance of two different receivers based on sym-

bol decision feedback (SDF) and chip hypothesis feedback (CHF) was demonstrated in a four-

user scenario, using experimental data obtained over a 2-km shallow-water channel. At a chip

rate of 19.2 kilochips per second (kc/s) with QPSK modulation, excellent results were achieved at

11 Code division multiple access, or CDMA, employs spread-spectrum technology and a coding scheme (where each

transmitter is assigned a code that is orthogonal to the others so that the cross-correlation of any two codes is close to

zero) to allow multiple users to be multiplexed over the same physical channel.

87

an aggregate data rate of up to 10 kbps. However, the results were obtained with a stationary sys-

tem, and the received power for each of the users was equal, a condition which will almost never

be the case in practice.

Stojanovic proposed a low complexity adaptive algorithm for detecting OFDM signals in

Doppler-distorted time-variant multipath channels [Stojanovic 2006a]. The receiver performs

MMSE (minimum mean square error) combining of signals received across an array, using adap-

tive channel estimation. Nonuniform Doppler compensation across subbands is performed using

a single adaptively estimated parameter representing the Doppler rate. A field test was conducted

in September 2005 in Buzzards Bay, Massachusetts, to measure the performance of the algorithm.

The channel was 12 meters deep and spanned 2.5 km. QPSK modulation with a varying number

of carriers was used, occupying 24 kHz of acoustic bandwidth. No decision errors occurred with

up to 1024 carriers, yielding an overall bit rate of 30 kbps.

A group from Scripps Institution of Oceanography presented OFDM performance results

from the KAM08 experiment, conducted off the western side of Kauai, Hawaii, in June 2008

[Kang 2009]. The experiment was performed in 110-meter deep shallow water over a distance of

4 km. The signal was sent from one transmitter to receiver array of 16 elements. The authors

compared three channel estimation algorithms and found that sparse channel estimation using

Orthogonal Matching Pursuit (OMP) [Pati 1993] performed the best for both single and multiple

receiver configurations. After combining the received signals from the hydrophone array, the

authors obtained a 0.01% BER at a data rate of 10 kbps for QPSK without coding. Unencoded

QAM produced a BER of about 12% at a data rate of 20 kbps. However, when iterative channel

estimation was applied, error-free transmission was obtained within two iterations.

In view of the related work presented here, one can conclude that there are many tech-

niques that allow for higher data rates than a channel‟s MIP will allow with binary signaling.

88

Also, it is clear that these techniques come at a cost, both in terms of algorithmic complexity and

the need for an array of hydrophones at the receiver. After reading these papers, though, one does

not walk away with an understanding of which methods can provide reliable communication at

the highest data rates in a given channel such as the Hudson. There are two obvious drawbacks to

the way research in this field is currently being directed. Every experiment is conducted in a dif-

ferent body of water, and no single experiment compares techniques (such as FH-FSK, QPSK

with DFE, and OFDM) that have vast differences. Instead smaller variations in algorithms, such

as channel estimation subroutines for OFDM, are investigated. While it seems that OFDM is ra-

pidly becoming the method of choice for underwater acoustic communication, it is clear that the

field is not yet ready to see how OFDM (or any other technique for that matter) performs in a

network as opposed to just a point-to-point link. For example, with OFDM, can the system be

designed so that all the carriers in the network remain orthogonal in environments with Doppler

distortion? How will the system perform if some nodes are mobile? The research community

would really benefit from a channel characterization study that is immediately followed by a

comparison of communication techniques in the same channel so that the relationship between

the channel‟s properties and technique can be established. Such a repository of information will

truly assist those designing protocols for software defined radio platforms that allow the system

adapt to a given environment. However, for the underwater acoustic communication community,

it seems that such an approach is still years away.

89

2.5.12 Limitations of Experimental Setup

Figure 2-63: Successive impulse response estimates with uncorrected clock skew.

There are several aspects of the experimental setup that contributed to error in the esti-

mates of the channel characterization functions. The first and most significant is clock skew in

the DAQ boards. The NI PCI-6221 has a timebase stability of 50.0 parts per million (ppm). The

NI PCI-6123 is even worse, with a timebase stability of 100.0 ppm. These numbers indicate that

the clocks on the transmitter and receiver can be noticeably out of sync with one another. In fact,

with the two devices working in tandem to sound the channel, the combined error was approx-

imately an extra 3 samples every second. With a sampling rate of 200 ksamples/sec, this amount

corresponds to a clock skew of 0.0015%, which is well within the devices‟ specifications but sub-

stantial enough to cause problems. Figure 2-63 shows the successive impulse response estimates

in the Hudson at 200m without compensating for clock skew. As time goes on, it takes progres-

sively longer for the correlation to occur. Interestingly, Dessalermos observed a similar slope in

his impulse response estimates but attributed it to boat drift [Dessalermos 2005]. As for the Hud-

son experiment, there was no drift, since both boats were anchored. Moreover, the phenomenon

was also observed on subsequent indoor experiments in the Davidson Laboratory towing tank,

90

where the transmitter and receiver were mounted to fixed apparatus in a perfectly still environ-

ment.

Many high quality DAQ boards have an input for GPS time synchronization or some oth-

er form of external clocking. Unfortunately none of the devices used in this experiment has ex-

ternal clocking capabilities. If that option were available, the clocks of the transmitter and re-

ceiver could have been synchronized to the same source, eliminating the clock skew problem al-

together.

Another possible solution to the clock skew problem is to resample the recorded data.

Resampling involves interpolation and decimation to change the sampling rate by a rational factor

(as well as filtering to remove aliasing). Since the recorded data gains approximately an extra 3

samples per second, it needs to be reduced to a sampling rate of 199,997 samples per second.

Because there are no common factors in 199,997 and 200,000, resampling is accomplished by

interpolating by a factor of 199,997 and then decimating by a factor of 200,000. Not only are the

computational requirements burdensome, but virtually every point in the new signal is interpo-

lated, thus introducing error.

Even if the error caused by interpolation is negligible, there is no way to determine pre-

cisely what the sampling rate should be. For example, perhaps the clock skew is actually 2.x or

3.x samples per second. Given all these unknowns and potential sources of error, the simplest

approach was chosen – to delete 3 samples per second from the recording. The first sample of

three chirp signals spanning the 1-second interval was eliminated. By dividing the interval into

three equal pieces, the skew within each second is kept to a minimum. Also, deleting the first

sample of the chirp and not one in the middle minimizes the error, since the weak intensity of the

reference and received signals at the low end of the spectrum has little effect on the overall corre-

91

lation. In addition, deleting the first sample avoids creating a phase discontinuity in the chirp sig-

nal.

The second problem with the channel sounding experiment was with the emitter and the

inadequate means of obtaining its frequency response. As seen in Figure 2-42, the frequency re-

sponse is irregular, varying 35 dB over the 20-100 kHz range spanned by the chirp signal. The

worst part is that the 1-meter reference signal is not an accurate indication of the device‟s true

properties. Because the estuary is so shallow at the test site, the reference signal also included

reflections from the surface and bottom that combined constructively and/or destructively, contri-

buting to the dips and valleys seen over the 80 kHz range. Instead, one of two options should

have been taken. The simplest and best approach would have been to utilize a reputable manu-

facturer‟s calibrated emitter with known specifications. Alternatively, the custom emitter could

have been taken to a facility with an anechoic underwater chamber for analysis. Either way, there

would have been greater confidence in the results.

2.6 Related Work

Loubet and Jourdain estimated the impulse response of a shallow water channel in the

Northern Sea. They used a Maximum Length Binary Sequence (MLBS) with a BPSK carrier of

550 Hz to sound the channel which was 500 meters deep and 4 kilometers wide (distance between

the transmitter / receiver pair) [Loubet 1993]. The authors discovered three multipath arrivals

that fluctuated in delay and amplitude due to surface reflections. They also plotted the time evo-

lution of the phase values corresponding to the three multipath components and found them to be

stable, even though the amplitudes fluctuated.

In May 1997 Cook and Zaknich sounded the Fremantle Fishing Boat Harbour in Western

Australia [Cook 1998]. The channel was approximately 150 meters long and 4 meters deep, and

both the transmitter and receiver were positioned at a depth of 1.5 meters. The chirp signal used

92

in this experiment had a duration of 10.306 ms and a bandwidth of 6 kHz centered at 17550 Hz

and was repeated every 100 ms for 1 minute. The authors illustrated four impulse response esti-

mates, taken at 0, 5, 25, and 50 seconds into the experiment. The plots consistently showed two

strong multipath components occurring within a 1-ms window followed by several other weak

arrivals that vary in delay and amplitude. One noteworthy aspect of this work is that the authors

used inexpensive, non-specialized hardware including a laptop PC, power amplifier operating in

switching mode, and piezo-electric transducer, to sound the channel.

Chitre, Potter, and Heng conducted an experiment in February 2004 to measure the time-

variability of the impulse response of Singapore waters [Chitre 2004]. The hydrophone was at-

tached to the bottom of a 4-meter pole mounted to an anchored barge. The emitter was also at-

tached to the bottom of a 4-meter pole mounted to the research vessel, which made transmissions

at distances of 50, 100, 550, 780, and 1020 meters from the barge. The sounding signal was a 30-

ms DSSS/BPSK waveform with a bandwidth of 40 kHz centered around 40 kHz. It was repeated

100 times at a rate of 10 Hz at each of the five locations. The recorded signal was sampled at 250

ksamples/sec. The multipath arrivals were detected using a sign correlator.

At 50 and 100 meters, the authors noted that a ray model fit the observed data well. The

surface-reflected arrival, which appeared less than 0.25 ms after the direct arrival, suffered very

little attenuation, while the bottom-reflected arrival, which appeared 3.6 ms after the direct arrival

at 50 meters and 1.8 ms at 100 meters, was 10 – 15 dB lower than the direct arrival. Other weak-

er reflections caused by multiple surface-bottom interactions and reflections from nearby objects

were occasionally observed. At the remaining distances, the direct and surface-reflected arrivals

could no longer be independently resolved. The authors also examined the fading characteristics

of the main arrival and discovered fading slightly less severe than Rayleigh when the direct arriv-

93

al was fully resolvable and fading more severe than Rayleigh when the direct and surface-

reflected arrival overlapped, most likely due to destructive interference.

In his master‟s thesis, Desselermos analyzed data gathered in the New England Shelf dur-

ing the April 2000 ForeFRONT-2 experiment [Desselermos 2005]. During this trial the receiver

was mounted 30 meters above the shelf‟s floor. The transmitter was deployed over the side of the

vessel at a depth of 20 meters. The channel was sounded at increasing distances in the range of

700 – 6550 meters from the fixed receiver. CTD measurements were taken prior to each sound-

ing.

The transmitted signal consisted of many different waveforms including 50-ms LFM

chirps in the range of 8 – 16 kHz, a comb signal consisting of 17 tones where each was separated

by 500 Hz in the 8 – 16 kHz range, and DSSS/BPSK signals generated with Gold sequences that

correspond to bit rates of 10 – 400 bps. At each distance Desselermos estimated the time-variant

impulse response using both the LFM chirp and DSSS signal and computed the scattering func-

tion and multipath intensity profile from the impulse response estimates obtained with just the

DSSS signal. He then used the BELLHOP model [BELLHOP 2010] to plot the eigenrays of the

channel and derive the theoretical MIP based on the arrival time of each eigenray. At 700 meters

the delay spread exceeded 15 ms, while at greater distances it tended to be shorter due to the at-

tenuation of multiple reflections. There was good correlation between the theoretical MIPs and

those calculated from measurements.

Aik, Sen, and Nan presented experimental analysis of medium frequency (9 – 28 kHz)

channel measurements in very shallow waters of 15 – 30 meters over the range of 80 – 4000 me-

ters in the coastal seas of Singapore [Aik 2006]. The channel was sounded with broadband BPSK

signals modulated with m-sequences. The symbol rate was 4625 bps, and the carrier frequency

was 18.5 kHz. Similar to Desselermos‟s findings, the authors noted that the delay spread general-

94

ly decreases as the distance increases, with the excessive time delay (maximum excess delay set

to 20 dB) ranging from 5.5 ms at 80 meters down to 0.5 ms at 4000 meters, with a slight increase

to 7 ms occurring at 130 meters. They also observed that coherence time increased over longer

distances. At 80 meters the coherence time was approximately 0.11 s, while it was 0.5 s at 4000

meters, even with the ship drifting during that particular sounding. The authors also determined

that the channel exhibited a mix Rayleigh and Ricean fading, with Ricean being the better fit for

most of the longer distances, and that the Gaussian distribution was a poor fit for the ambient

noise present in Singapore waters.

In August 2008 Kim et al. conducted a channel sounding experiment in Jinhae Bay, near

the southern cost of Korea, where the water is about 20 meters deep [Kim 2009]. The receiver

was fixed while the transmitter was moved to distances of 105, 193, 304, 425, 600, and 1000 me-

ters away from the receiver to sound the channel. An ITC-1001 omnidirectional projector was

utilized for transmission while a vertical array of 8 B&K Type 8103 hydrophones was employed

as the receiver. Two signals were used to sound the channel – a pure tone signal consisting of 5

frequencies, each separated by 5 kHz, in the 20 – 40 kHz range and a broadband BPSK signal

modulated by an m-sequence of 1023 bits at 5000 sps.

Kim et al. have stated that frequency and coherence time tend to be inversely related,

though the plots shown in Figure 5a only partially support that claim. As for the relationship be-

tween distance and coherence time, at 105 and 600 meters they calculated a shorter coherence

time than at the remaining distances. The fading distribution was Rician at mid-range distances;

however, the Rayleigh distribution was a better fit at both extremes.

2.7 Summary and Future Work

This chapter discussed the characterization of underwater acoustic channels for the pur-

pose of estimating the channel‟s impact on the performance of a digital communication system.

95

It provided an in-depth comparison of various sounding signals, description of the procedure used

to gather data about the channel, and explanation of the signal processing that converts raw data

into meaningful characterization functions. The analyses of two WSSUS underwater channels, an

artificial office test setup and the Hudson River estuary, were presented. In both cases, the chan-

nel‟s scattering function and all derived functions were computed. Values for Doppler shift and

spread, delay spread, coherence bandwidth, and coherence time were provided. In addition, vari-

ous distributions were fitted to amplitude fluctuations, and the channel was found to degrade from

Ricean to Gamma fading (worse than Rayleigh) over increasing distances in the Hudson.

Future work in this area is broken down into the following four steps, which are listed in

order of increasing complexity:

1) Determine the true frequency response of the emitter. As mentioned in Section 2.5.12, the

response of the emitter obtained at 1 meter is not accurate, since constructive and destructive

interference from multiple reflections cannot be eliminated from the test setup. The trans-

ducer should be taken to a facility with an anechoic chamber for analysis or, if this is not

possible, a device with known specifications should be deployed instead.

2) In addition to sounding the channel with LFM chirps, both a DSSS/BPSK signal based on a

PN sequence and white noise should be used. Before attempting to use them in the Hudson,

these other signals should first be tested in the time-invariant tub to see how the impulse re-

sponse estimates derived from them compare to those obtained when using LFM chirps.

3) When going out into the Hudson, characterize the channel at several other distances – some

less than 200 meters and some greater than 505 meters. With only two points in the data set,

making generalizations is virtually impossible. In addition to sounding signals, waveforms

containing modulated data should be transmitted and recorded for offline analysis. It would

96

be interesting to see how the data rates predicted by the characterization functions differ from

those actually obtained in the channel.

4) Deploy buoys complete with computers, transducers, and standard RF-based wireless com-

munication to perform channel characterization remotely at any time. Having the ability to

gather data without the hassle of manually deploying two boats and a team of scientists would

be a huge asset to the underwater communications research community. Data can be ga-

thered at any time of the day during any day of the week in any season of the year by simply

issuing a command to power up the system. Once data is recorded, it can be downloaded via

802.11 to a computer in the lab for offline processing. Such a system truly affords the ability

to make statistical observations and generalizations. Of course, many details about the design

of the system for long-term deployment, including buoy location, method of battery reple-

nishment, and thermal considerations, must be carefully engineered.

97

Chapter 3

Simulation of Underwater Channel and

Physical Layer

3.1 Purpose

The work described in this chapter takes impulse response measurements such as those

from Chapter 2 and applies them to an underwater channel model for use in the OMNeT++ dis-

crete event simulator [OMNeT 2010]. The basic idea is to simulate any underwater channel

based on real measurements to recreate the distortion the actual channel would impose on a sig-

nal. Through a mathematical process called convolution, the impulse response estimates obtained

from the channel sounding experiment serve as the basis for this model. In this simulation the

application layer of a node generates real data packets, which get converted into modulated

acoustic signals. These modulated waveforms are “mixed” with the channel‟s properties and sent

to a receiver implemented fully in software, where the actual BER is computed. This form of

simulation results in more accurate BERs than what is currently being generated by underwater

network simulators that derive a BER based solely on SINR. The simulation currently offers

PSK (phase-shift keying) and FSK (frequency-shift keying) transmission and means of adjusting

the sampling rate, carrier frequency, and symbol rate among other configuration parameters.

3.2 Related Work

BELLHOP is a program, originally written in Fortran but now also available in MAT-

LAB, that performs two-dimensional acoustic ray tracing for a given sound speed profile or

sound speed field in ocean waveguides with flat or contoured absorbing boundaries [Porter 1994;

Rodríguez 2008]. It can output ray coordinates, travel time, amplitude, eigenrays, acoustic pres-

sure, and transmission loss. Though this program is not specifically oriented toward underwater

98

communication, it provides useful information about the channel and has been integrated into

other simulations described below. Figures 3-1 and 3-2 as well as Figure 1-2 from Chapter 1 de-

pict some of BELLHOP‟s outputs.

Figure 3-1: Eigenrays characterizing the acoustic propagation over 700 meters in the New England

Shelf traced using BELLHOP [Dessalermos 2005].

Figure 3-2: BELLHOP theoretical estimate of multipath intensity profile of New England Shelf at

700 meters [Dessalermos 2005].

99

Diamant and Chorev describe a tool for measuring and emulating the underwater acoustic

channel which relies on the impulse response matrix (IRM) evaluation [Diamant 2005]. Using

data obtained during a channel sounding experiment, the authors construct a matrix of sequential

impulse responses to represent the time-varying impulse response of the channel, with the Medi-

terranean Sea used as a case study. Two-dimensional convolution is performed with a modulated

waveform and the emulated IRM to produce a new signal that exhibits the emulated channel re-

sponse (ECR). Transmission loss over the channel is evaluated by subtracting the measured the

level at the receiver from the measured the source level of the transmitter. Noise, either generated

with an empirical formula or recorded in the actual channel, can be added to the signal to emulate

various SNRs. The authors found the ECR to a given signal to be highly correlated (typically

greater than 80%) with the response of the actual channel.

Harris and Zorzi implemented a model [Harris 2007] for ns-2 [NS2 2010] that mainly re-

lies on empirical formulas to describe the underwater acoustic channel. Their model is divided

into the following four categories: propagation, channel, physical layer, and modulation. The

propagation model calculates the SNR of a signal at the receiver after attenuation, ambient noise,

and possible interference from other nodes are taken into account. Thorp‟s approximation for the

absorption of a wave at a given frequency and formulas for the PSD of various noise-producing

agents [Coates 1989] form the basis for calculating the range of transmission and SNR at the re-

ceiver. The channel model maintains lists of nodes to calculate neighbor sets and determine if

packet collisions occur during transmissions. In addition, the channel model is responsible for

calculating propagation delays. The physical layer model calculates the available bandwidth for

the channel given the distance between the transmitter and receiver and relies upon the modula-

tion model to calculate the effective bit rate and bit error rate, given the SNR and bandwidth used.

100

The Underwater Sensor Network Lab (UWSN) at the University of Connecticut has de-

veloped a simulator called Aqua-Sim [Aqua-Sim 2010] as an extension to ns-2. While still a

work in progress, the software currently supports 3D and mobile networks, simulates underwater

acoustic channels, and implements a complete protocol stack from the physical layer up to the

application layer. UnderwaterChannel and UnderwaterPhy are the C++ classes most relevant to

the other works in this section. In this simulator, these objects focus on power consumption and

propagation range and delay for recreating packet collisions. There is no support for estimating

bit error rates based on SNR or channel impulse response estimates. Based on the publications

listed on the lab‟s web site as well as a code walk-through, the simulator‟s strong point is for eva-

luating protocols, especially those at the MAC and routing layers.

Another work in progress is the NS2 UAN Simulator being developed by the Fundamen-

tals of Networking Laboratory (FuNLab) at the University of Washington‟s Department of Elec-

trical Engineering [FuNLab 2010]. While not intended for distribution, the ns-2 version of the

software is available for downloading. It features a FH-FSK PHY which attempts to closely

model FH-FSK as implemented in the WHOI Micro-Modem, an improved propagation layer

which uses BELLHOP output to compute signal attenuation and channel delay spread, and sever-

al new MAC layers including pure ALOHA, ALOHA with random backoff, and a reservation

MAC with a dedicated control channel. The team, led by Leonard Tracy, is currently developing

new modules for ns-3, none of which is presently available.

The World Ocean Simulation System (WOSS) also employs the BELLHOP model for

propagation modeling [Guerra 2009]. This project interfaces with three separate databases to ob-

tain the information necessary to run the BELLHOP model, which includes the sound velocity

profile, the bathymetric profile, and the type of bottom sediments. The World Ocean Database

[WOD 2010] which contains the constituent data for generating sound velocity profile for under-

101

water channels across the world. The bathymetric data have been taken from the General Bathy-

metric Chart of the Oceans [GEBCO 2010], a public database offering samples of the depth of the

sea bottom with an angular spacing of 30 seconds of arc. Finally, the type of bottom sediments is

taken from the National Geophysical Data Center‟s Deck41 database [NGDC 2010]. Noise pow-

er is computed through empirical formulas and is modeled as a white process within the frequen-

cy band of the modulated carrier. Upon obtaining a specification of the physical layer, the MI-

RACLE package [MIRACLE 2010] for ns-2 handles the remaining part of the simulation, namely

the computation of Signal-to-Interference-plus-Noise Ratio (SINR) for all transmissions and the

error rates corresponding to these SINR values.

Shin and Park implemented a simulation for the underwater environment in OMNeT++

[Shin 2008]. The propagation model is simply based on empirical formula, since the authors

were more concerned with simulating various ack techniques. Finally, Nasri et al. proposed si-

mulating the underwater channel using the hardware description language VHDL-AMS [Nasri

2009]. The one aspect of this work that differentiates it from the others is the simulation of a

multipath Rayleigh fading channel via Jakes‟s model [Jakes 1975].

The simulation described in this section differs from the previous work in that it is fully

based on channel measurements, providing the most accurate representation of the channel possi-

ble. The impulse response measurements give the delay spread and frequency response of the

channel. The CTD measurements are used to calculate the propagation delay. Ambient noise is

added to the signal to realistically estimate the SNR with which the signal is received. Unlike

prior efforts, the simulation employs real software defined radio concepts. The transmitter and

receiver manipulate sampled signals just as they would in a digital communication system, with

hard limiters, filters, correlators, and comparators, making it easy to test how a given PHY layer

implementation works in the channel. Furthermore, the simulation is written in a modular fashion

102

so that it can easily be extended with new processing blocks and any component can be replaced

with an alternate implementation.

3.3 Simulation

Measurements form the basis of the simulation. CTD measurements yield the sound ve-

locity profile of the channel, which is then used to calculate the propagation delay. Noise mea-

surements are combined with a formula for the estimated transmission loss to approximate the

SNR with which a packet is received. Data packets are converted into modulated waveforms and

convolved with the impulse response of the channel, and then noise is added to produce a new

signal that has the SNR previously computed by the simulation. At this point the new signal con-

tains a reasonably close approximation to the distortion the channel would have imposed upon a

real transmitted waveform. Finally, the distorted signal is demodulated and its BER is computed.

Figure 3-3 depicts the architecture of the OMNeT++ simulation. The application and

link layers are implemented as objects within OMNeT++. While these layers are outside the

scope of this project, they exist to form a more cohesive network stack whose functionality can be

extended in future work. At the present time the application layer simply creates and receives

messages. The transport layer, which typically handles reliable end-to-end delivery with sophis-

ticated functions such as retransmission and flow control, has not been implemented. The link

layer manages checksums. Before frames are sent to the PHY layer, the link layer computes the

checksum and stores it inside the frame. Upon receiving an incoming frame from the PHY later,

the link layer recomputes the checksum and compares it to the stored checksum. If the two val-

ues match, the message is passed up to the application layer. Otherwise, it assumes that the data

is corrupt, and the frame is discarded. The PHY layer and underwater acoustic channel model is

actually implemented in MATLAB and exported as a shared library with which the OMNeT++

103

simulation links. More details about the implementation of the PHY layer and channel appear in

the subsequent sections.

Figure 3-3: Architecture of OMNeT++ simulation for PHY layer and underwater acoustic channel.

Areas in gray represent data from measurements. Areas in yellow are implemented in MATLAB. A

simple implementation of the application and link layers is included for future extensions but is not

the focus of this work.

104

3.3.1 Propagation and Transmission Delay

Propagation delay is the amount of time it takes for the beginning of a (possibly long)

signal to travel from the transmitter to the receiver over a channel. In order to calculate it, the

distance of the link and the propagation speed must be known. In this simulation the link distance

is an adjustable user parameter with acceptable values of 200 or 505 meters, since those are the

only two distances for which measurements exist. Note that simulator itself can model any dis-

tance, as long as the corresponding data is present. The speed of sound in water is often esti-

mated to be 1500 m/s; however, this simulation aims to be more accurate. The sound velocity

profile is computed using Equation (2.23). The velocity values obtained over the water column

are averaged. This average rate is then used to calculate the approximate propagation delay with

the standard time = distance / rate formula. Transmission delay is the amount of time it takes to

send all of the packet‟s bits into the channel. It is given by the formula DT = N / R, where DT is

the transmission delay, N is the number of symbols, and R is the rate of transmission in symbols

per second.

3.3.2 Transmission Loss

Transmission loss, which describes the weakening intensity of a signal over a distance,

was not measured during the August 2008 experiment in the Hudson River estuary. It was, how-

ever, measured in a previous experiment conducted in the same region of the Hudson by a group

of researchers at Stevens [Roh 2008]. They estimated the attenuation coefficient α at 0.058 dB/m

between 10 – 80 kHz, yielding the following formula for transmission loss:

 (3.1)

where r is the distance over which the loss is being calculated. The simulation uses this equation

to estimate transmission loss.

105

3.3.3 Noise

Figure 3-4: Noise levels in the Hudson River estuary produced by different passing ships.

Noise measurements from previous experiments were incorporated into the simulation

[Borowski 2008]. Two categories of noise are modeled. The first is just ambient noise in the

estuary, while the other is the noise level when various ships are present. Figure 3-4 shows the

noise levels recorded in the Hudson River estuary under different conditions ranging from am-

106

bient noise to a small speed boat to a large tug and barge. The simulation chooses a noise level

randomly for each packet that is sent through the channel.

The simulation determines the average noise level in the frequency band of the mod-

ulated signal. For instance, binary FSK signaling at 1000 symbols per second typically requires 2

kHz of bandwidth for good performance with a noncoherent receiver. Therefore, if the carrier

frequency were 50 kHz, the simulation would find the average noise level in dB from 49 – 51

kHz. Since the values are given in dB, they must converted to linear scale, averaged, and then

converted back to dB scale, as in

 (3.2)

where L is the level of a particular frequency component in dB.

3.3.4 Modulation

The simulation can generate binary FSK or PSK waveforms. With binary FSK, two

tones are used. One tone represents the data bit „0‟ and the other represents „1‟. Since the FSK

receiver implements noncoherent demodulation, the tones must be separated by the number of Hz

equal to the symbol rate. So, at 2000 bits per second, the tones must be separated by 2000 Hz.

More formally, modulation index k is set to 1. The modulation index is defined by the formula

 (3.3)

where fd is the frequency deviation in Hz (½ the separation between the two tones) and R is the

data rate in symbols per second. As with other inexpensive noncoherent FSK systems, a modula-

tion index of 1 is required to obtain reasonable receiver performance [Marrow 2002]. A specific

type of FSK, called continuous-phase FSK or CPFSK, has been implemented as it is more band-

width-efficient than FSK that breaks phase at the start of each symbol. Figure 3-5 shows the

MATLAB code to generate a CPFSK signal.

107

%% Performs CPFSK modulation.

% Pre: data is a vector of length numberOfBits of zeros and ones.

samplingRate = 200000;

symbolsPerSecond = 1000;

samplesPerBit = floor(samplingRate / symbolsPerSecond);

carrierFreq = 80000;

fc = [(carrierFreq - symbolsPerSecond / 2) (carrierFreq + symbolsPerSecond /

2)];

txFSK = zeros(1, samplesPerBit * numberOfBits);

t = 0.0;

for i = 1:numberOfBits

 for j = 1:samplesPerBit

 t = t + 2 * pi * fc(data(i)+1) / samplingRate;

 if (t > pi)

 t = t - 2 * pi;

 end

 txFSK(j + samplesPerBit*(i-1)) = cos(t);

 end

end

Figure 3-5: MATLAB code to generate a CPFSK waveform.

 While FSK changes the frequency of the carrier signal, PSK changes the signal‟s phase.

With BPSK, the signal representing a „0‟ is 180° out of phase with the signal representing a „1‟.

The MATLAB code to generate a BPSK signal, shown in Figure 3-6, is quite similar in structure

to the code for FSK. Note that t is reset to 0 before generating the next symbol. This step is ne-

cessary so that any carrier frequency can be used and successfully demodulated by a simple cor-

relation receiver. If this step were not present, the symbol rate would need to evenly divide the

carrier frequency, which would need to evenly divide the sampling rate so that there would be an

even number of periods of the sinusoid in each symbol and that the phase transitions would occur

only 180° apart at y = 0.

%% Performs PSK modulation.

% Pre: data is a vector of length numberOfBits of zeros and ones.

samplingRate = 200000;

symbolsPerSecond = 1000;

samplesPerBit = floor(samplingRate / symbolsPerSecond);

carrierFreq = 80000;

txPSK = zeros(1, samplesPerBit * numberOfBits);

t = 0.0;

for i = 1:numberOfBits

 offset = samplesPerBit * (i-1);

 for j = 1:samplesPerBit

 t = t + 2 * pi * carrierFreq / samplingRate;

 if (t > pi)

108

 t = t - 2 * pi;

 end

 if (data(i) == 0)

 txPSK(j + offset) = -cos(t);

 else

 txPSK(j + offset) = cos(t);

 end

 end

 t = 0.0;

end

Figure 3-6: MATLAB code to generate a PSK waveform.

3.3.5 Channel Emulation

The impulse response estimates of the Hudson River estuary from Section 2.5.4 form the

kernel of the simulation. The database seen in Figure 3-3 is implemented as two directories of

wav files, one pertaining to the measurements at 200 meters and the other at 505 meters. The

code in Figure 3-7 shows how the impulse estimates have been extracted. There are two note-

worthy aspects of this code segment. The first is that each impulse response must be “cropped”

to contain only significant multipath components. Any value that is within 6 dB (0.25) of the

strongest arrival‟s intensity must be included in the estimate, as it contains relevant information

about the delay spread and frequency response of the channel at that moment. In a personal con-

versation with Jim Preisig at WUWNet‟09 [Preisig 2009], he stated that values within 4 dB of the

strongest intensity are significant, though he agreed that choosing a -6 dB cutoff would also be

reasonable. The second interesting point is that the impulse responses can be normalized only

after all of them have been extracted. This way, the amplitudes of the estimates obtained during a

deep fade are not artificially increased to equal those of estimates obtained during periods with

high SNR. While this feature is not exploited in the current simulation, it is beneficial to create

the database with measurements that are as accurate as possible for future extensions.

%% Extracts impulse estimates to individual wav files.

seconds = 0.005;

len = seconds * samplingRate;

impulseResponse = zeros(numOfImpulseResponses, len);

109

for i = 1:numOfImpulseResponses

 snip = recordedSignal((i-1)*referenceSamples+1:i*referenceSamples);

 temp = fftshift(real(xcorr(snip, conj(referenceSignal))));

 [maxValue maxIndex] = max(temp);

 earlyPeakIndex = ...

 find(temp(max(maxIndex - 0.0005*samplingRate, 1):end) > 0.25*maxValue);

 [mainPeak mainPeakIndex] = ...

 max(temp(max(maxIndex - 0.0005*samplingRate, 1):end));

 offset = mainPeakIndex - earlyPeakIndex;

 temp = temp(maxIndex - offset:maxIndex - offset + len);

 impulseResponse(i,:) = temp(1:len);

end

[maxVal maxIndex] = max(max(abs(impulseResponse)));

impulseResponse = 0.98 * impulseResponse / maxVal;

for i = 1:numOfImpulseResponses

 filename = sprintf('IR_200m/IR_%d', i);

 wavwrite(impulseResponse(i,:), samplingRate, filename);

end

Figure 3-7: MATLAB code to extract impulse estimates to individual wav files.

 When a frame is passed through the simulated channel, it is convolved with one random-

ly chosen impulse response estimate. As the lengths of the input vectors grow, the execution time

of convolution performed in the time domain grows quadratically. Therefore, to improve the per-

formance of the simulation for long data frames and/or delay spreads, FFT convolution is imple-

mented. Convolution in the time domain corresponds to multiplication in the frequency domain.

Thus, in FFT convolution the input signal is transformed into the frequency domain using FFT,

multiplied by the frequency response of the filter, and then transformed back into the time domain

using the inverse FFT [Smith 2003]. The complexity of FFT convolution is O(n log n), which is

a huge improvement over O(n
2
).

 After the convolution routine is finished executing, noise is added to the signal so that the

resulting SNR = SL – TL – NL, where SL is the user-specified source level, TL is the transmis-

sion loss described in Section 3.3.2, and NL is a randomly chosen noise level described in Section

3.3.3. The noise added to the signal is AWGN. This is a reasonable simplification, since the si-

mulation is concerned only with noise in the frequency band of the data transmission, which oc-

cupies a small amount of space on the acoustic spectrum.

110

3.3.6 Demodulation

The simulator can demodulate PSK and FSK signals. A correlation receiver is used to

demodulate PSK waveforms. It works by dividing the incoming stream into small sections with

the duration of an individual symbol. Each section is multiplied by the reference signals of the

same length that represent the symbols „0‟ and „1‟. The results are then summed over the symbol

duration, and finally the comparator chooses the symbol whose sum was the greatest. Figure 3-8

shows the block diagram for a correlation receiver with M reference signals. Note that in the case

of BPSK waveforms, only 2 reference signals are required. Figure 3-9 shows how to translate the

block diagram into MATLAB code.

Figure 3-8: Correlation receiver with M reference signals {si(t)} [Sklar 2001].

%% Demodulates PSK signal using a correlation receiver.

t = 0:samplesPerBit-1;

psk0 = -cos(2 * pi * carrierFreq/samplingRate * t);

psk1 = cos(2 * pi * carrierFreq/samplingRate * t);

rxPSK = zeros(1, numberOfBits);

for i = 1:numberOfBits

 rcv = packet((i-1)*samplesPerBit + 1:i*samplesPerBit);

 zero = rcv .* psk0;

 one = rcv .* psk1;

 z0 = sum(zero);

 z1 = sum(one);

 rxPSK(i) = (z1 > z0);

end

Figure 3-9: MATLAB code implementing a correlation receiver for PSK signals.

111

While the PSK waveform that was transmitted originally contained ‟0‟ and „1‟ reference

signals of –cos(2πft) and cos(2πft), where f is the carrier frequency and t is time, the phase of re-

ceived waveform may be distorted so that transitions no longer occur at 0° and 180°. For in-

stance, perhaps they now occur at 25° and 205°. In order to improve the performance of the cor-

relation receiver, it would be necessary to estimate these offsets. A simple solution, the one im-

plemented in the simulator, is to send training symbols of alternating ones and zeros at the begin-

ning of the signal. The receiver can first try various offsets to find the one that maximizes the

correlation of the known symbols. Since the model currently convolves a single impulse re-

sponse with the data signal, this type of synchronization is adequate. However, when communi-

cating through and modeling real time-variant channels, more sophisticated methods are neces-

sary. A receiver which jointly performs carrier synchronization and fractionally spaced decision

feedback equalization of the received signal and whose parameters are adaptively adjusted using

a combination of the RLS algorithm and second-order digital PLL was shown to perform well in

short-range shallow water of 2 nautical miles at 10 kbps [Stojanovic 1994]. Since the simulator is

written in modular fashion, one can write the code for this receiver in MATLAB and incorporate

it into model with minimal effort.

Noncoherent detection of FSK waveforms is implemented via both the quadrature receiv-

er and bandpass filters/envelope detectors. Each receiver is also able to employ a hard limiter

[Jones 1963] as the first stage of demodulation process. This procedure places a cap on high-

amplitude samples and raises low-amplitude samples to the value of the cap. Utilization of a hard

limiter helps equalize the signal so that each tone in the FSK signal has the same amplitude be-

fore it is passed to subsequent stages of the receiver. This is especially useful when working with

transducers that do not have a flat frequency response. Two correlators are used for each tone,

one for the in-phase (I) and quadrature (Q) channels. Since measurements of the signal‟s phase

112

cannot be exploited, the receiver is merely an energy detector. By summing the squares of the

correlation on each channel, the same values will be fed to the decision stage if either channel had

full correlation while the other had none or if the incoming signal partially correlated with both

references. Figure 3-10 shows the block diagram for a quadrature receiver; Figure 3-11 shows

how to translate the block diagram into MATLAB code. The implementation of hardlimit is

found in Section B.2 of the appendix.

Figure 3-10: Quadrature receiver for noncoherent detection of FSK signals [Sklar 2001].

%% Demodulates FSK signal using a quadrature receiver.

fc = [(carrierFreq - symbolsPerSecond/2) (carrierFreq + symbolsPerSecond/2)];

t = 0:samplesPerBit-1;

cos0 = cos(2 * pi * fc(1)/samplingRate * t);

sin0 = sin(2 * pi * fc(1)/samplingRate * t);

cos1 = cos(2 * pi * fc(2)/samplingRate * t);

sin1 = sin(2 * pi * fc(2)/samplingRate * t);

rxFSK_q = zeros(1, numberOfBits);

for i = 1:numberOfBits

 if (useLimiter)

 rcv = hardlimit(packet((i-1)*samplesPerBit + 1:i*samplesPerBit));

113

 else

 rcv = packet((i-1)*samplesPerBit + 1:i*samplesPerBit);

 end

 Izero = rcv .* cos0;

 Qzero = rcv .* sin0;

 Ione = rcv .* cos1;

 Qone = rcv .* sin1;

 z1 = (sum(Izero))^2;

 z2 = (sum(Qzero))^2;

 z3 = (sum(Ione))^2;

 z4 = (sum(Qone))^2;

 energy0 = z1 + z2;

 energy1 = z3 + z4;

 rxFSK_q(i) = (energy1 > energy0);

end

Figure 3-11: MATLAB code implementing a quadrature receiver for FSK signals.

 The simulation also implements noncoherent FSK detection with bandpass filters fol-

lowed by envelope detectors, as shown in Figure 3-12. When using binary FSK, the incoming

signal is passed through two separate filters (M = 2 in Figure 3-12) to eliminate signals outside

the band used by each tone. Second-order IIR filters based on the design in [Smith 2003] are

used. For a second-order filter, the best performance is obtained when the product BT is close to

1.0, where B is the -3dB bandwidth in Hz and T is the duration of a symbol [WJC 1980]. There-

fore, the filters have been designed to operate with bandwidth 1/T centered on the tones

representing 0s and 1s.

Figure 3-12: Noncoherent detection of FSK signals using bandpass filters and envelope detectors

[Sklar 2001].

114

Upon completion of the filtering stage, the resulting signals are passed to the envelope

detectors, each of which first applies the Hilbert transform to obtain the imaginary part xi of a

signal containing only real values xr. The envelope is then obtained by taking the magnitude of

the signal, as shown by Equation (2.22). Finally, for each symbol the envelopes are summed over

several samples, and the symbol corresponding to the greatest sum is outputted by the decision

stage. Figure 3-13 shows how to translate the block diagram in Figure 3-12 to MATLAB code.

The implementation of filterSignal is found in Section B.3 of the appendix.

%% Demodulates FSK signal using a bandpass filters and envelope detectors.

fc = [(carrierFreq - symbolsPerSecond/2) (carrierFreq + symbolsPerSecond/2)];

if (useLimiter)

 zeroSignal = abs(hilbert(filterSignal(hardlimit(packet), samplingRate, ...

 fc(1), symbolsPerSecond)));

 oneSignal = abs(hilbert(filterSignal(hardlimit(packet), samplingRate, ...

 fc(2), symbolsPerSecond)));

else

 zeroSignal = abs(hilbert(filterSignal(packet, samplingRate, fc(1), ...

 symbolsPerSecond)));

 oneSignal = abs(hilbert(filterSignal(packet, samplingRate, fc(2), ...

 symbolsPerSecond)));

end

diff = oneSignal - zeroSignal;

rxFSK_e = zeros(1, numberOfBits);

for i = 1:numberOfBits

 % Sample in second half of symbol to avoid ring in IIR filter.

 rcv = sum(diff((i-1)*samplesPerBit + ...

 floor(samplesPerBit/2):i*samplesPerBit));

 rxFSK_e(i) = (rcv > 0);

end

Figure 3-13: MATLAB code implementing a receiver for FSK signals with bandpass filters and

envelope detectors.

3.4 Emulator Validation

In order to validate the design of the measurement-based channel emulator, several expe-

riments were conducted in the office test environment. The premise is that a frame that is trans-

mitted through the channel will have the same number of bit errors as a clean frame waveform

that is convolved with the impulse response of the channel. The office test environment was used

because it is easily accessible and offers a simplistic time-invariant channel. The simulation is,

115

indeed, expected to be less accurate for the Hudson River estuary because of its complex time-

variant nature and severe fading. However, another field experiment in the Hudson was not poss-

ible due to lack of funding.

3.4.1 Procedure

Thirty composite test signals were generated and transmitted through the tub. Binary

FSK and PSK signals were transmitted at five different bit rates to cover cases with and without

channel-induced ISI. Communication was tested in three frequency bands – 7.5 kHz, 12.5 kHz,

and 17.5 kHz – that evenly divided and collectively spanned the usable channel bandwidth. The

sampling rate for all signals was 48 kHz.

Each composite signal starts with a 5-second LFM chirp over the entire channel band-

width (0 – 24 kHz) that is used to estimate the system‟s impulse response at the beginning of that

particular test. The time-invariant office test environment provides the opportunity to use a long-

er chirp signal than was used in the Hudson experiment, resulting in the best autocorrelation, and

hence, most accurate impulse response estimate. Modulated waveforms appear after the long

chirp signal. Fifty duplicate packets, each beginning with a short chirp signal for synchronization

purposes and separated from the next by 1 second of silence, were transmitted in all tests except

for those running at only 250 bps, where only twenty duplicate packets were transmitted. Table

3-1 summarizes the bit rates tested at each frequency. Only bit rates that even divided the carrier

frequency were used in this experiment. Figures 3-14 and 3-15 show the time and frequency do-

main views of the recorded chirp signal and FSK-modulated packets during one of the fifteen

tests.

116

Table 3-1: Bit rates tested at each carrier frequency in the office tub.

Frequency (Hz) Bit Rate (bps)

7,500 250 500 1250 2500 3750

12,500 250 500 1250 2500 3125

17,500 250 500 1250 2500 3500

Figure 3-14: Time domain view of recorded 5-second LFM chirp signal followed by FSK-modulated

packets at 500 bps with a 12.5 kHz carrier.

Figure 3-15: Frequency domain view of Figure 3-14 (recorded 5-second LFM chirp signal followed

by FSK-modulated packets at 500 bps with a 12.5 kHz carrier).

117

 For each of the fifteen trials in this experiment, the recorded signal of modulated wave-

forms was processed in MATLAB. The series of FSK-modulated packets was demodulated with

the envelope detector and quadrature receiver, both with and without the hard limiter, as de-

scribed in Section 3.3.6. Detection of PSK packets was accomplished via the correlation receiver,

also described in Section 3.3.6. The BER of each packet was computed, and then the average

BER for that trial was calculated.

 The simulated BER was obtained by first estimating the channel‟s impulse response. As

in Section 2.2.2, the impulse response was obtained by cross-correlating the received signal with

the complex conjugate of the reference signal, which in this case is the 5-second LFM chirp sig-

nal at start of each trial. The impulse response was then convolved with the signal containing the

waveform of a single modulated packet. Note that only one packet is needed here, since only one

impulse response estimate was obtained at the start of the test. In theory, because the office tub is

a time-invariant environment, the estimated impulse response should remain nearly constant over

the duration of a trial.

3.4.2 Analysis

 Appendix C lists the results of each of the fifteen trials in this experiment. Tables 3-2

through 3-5 summarize the comparison of BERs obtained with data transmission versus convolu-

tion with the channel‟s impulse response. The percent difference is defined merely as the differ-

ence between the two BERs. The standard formula for percent error cannot be applied, since it

requires the measured and expected values to be positive (> 0). In general, the average difference

is quite good, varying only approximately 3.34%. There are several cases where the difference is

0. These instances appear mostly at the slower bit rates, where the symbol duration easily ex-

ceeds the channel‟s delay spread. There are also a few cases of large discrepancies of greater

than 20% appearing in seemingly random positions in the tables of Appendix C.

118

Table 3-2: Overall comparison of BERs obtained with data transmission versus convolution.

Overall % Difference

Average Min Max Std. Dev.

3.34 0.00 33.31 8.21

Table 3-3: Comparison of BERs obtained with data transmission versus convolution, per carrier fre-

quency.

 % Difference

Frequency (Hz) Average Min Max Std. Dev.

7,500 1.74 0.00 12.47 3.35

12,500 3.66 0.00 33.31 8.16

17,500 4.61 0.00 27.69 8.11

Table 3-4: Comparison of BERs obtained with data transmission versus convolution, grouped by the

type of modulation-demodulation.

 % Difference

Modulation Demodulation Implementation Average Min Max Std. Dev.

FSK

Envelope Detector
Amplitude Comp. 2.60 0.00 20.16 5.22

Hard Limiter 3.34 0.00 27.69 7.28

Quadrature Receiver
Default 4.35 0.00 24.41 7.36

Hard Limiter 2.89 0.00 24.31 6.14

PSK Correlator N/A 3.51 0.00 33.31 9.01

Table 3-5: Comparison of BERs obtained with data transmission versus convolution, grouped by bit

rate.

 % Difference

Bit Rate (bps) Average Min Max Std. Dev.

250 0.00 0.00 0.00 0.00

500 2.03 0.00 24.41 6.29

1250 7.50 0.00 27.69 9.72

2500 3.91 0.00 13.25 4.21

>3000 3.25 0.00 33.31 8.41

119

 The amount of error increases with the carrier frequency. Since there should be no corre-

lation between frequency and error, it becomes necessary to investigate the channel more closely.

The frequency response of the impulse response estimate obtained at the start of each test can be

computed using an FFT algorithm, which is accomplished easily with MATLAB‟s freqz function.

Figure 3-16 shows the impulse response obtained during one of the tests. Figure 3-17 shows the

frequency and phase response of the system derived from the impulse response in Figure 3-16.

Over the course of the entire experiment, the impulse response and corresponding frequency and

phase responses remained nearly constant. Upon viewing Figure 3-17 it makes sense why there

are more errors at 12.5 kHz and 17.5 kHz than at 7.5 kHz. There are dips of more than 20 dB in

the frequency response centered on 12.7 kHz and 17.5 kHz, which naturally give rise to drastic

changes in the phase response at those frequencies. While the impulse response estimates do cap-

ture these properties, it is clear that they are not perfectly accurate, as the simulated bit error rates

deviate from the measured values.

Figure 3-16: Impulse response of office test tub during validation experiment.

120

Figure 3-17: Frequency and phase response of office test tub, derived from impulse response in Fig-

ure 3-16.

There is no obvious conclusion to draw about the discrepancies between the simulated

and measured values grouped by the modulation-demodulation routine. The average difference is

within a few percent for all tests, though PSK demodulation does possess the worst-case value of

the experiment. There is, however, a trend seen with increasing bit rate. The simulator is quite

accurate for slow data rates, where the symbol duration exceeds the delay spread of the channel.

At 250 bps and 500 bps, except for the FSK trial at 12.5 kHz bps with the default quadrature re-

ceiver, the simulated and measured bit error rates are identical. For this particular case, it seems

that the simulator exaggerates the dip in the frequency response at 12.7 kHz, since it yields a BER

of about 24% while the BER for real packets was actually 0%. When using the impulse response,

the tone representing a „1‟ is so much lower in amplitude than the tone representing a „0‟ that in-

correct correlation produces a bit error in favor of „0‟ 50% of the time a „1‟ should be present,

resulting in the simulated BER of 24%. Note that the particular sequence of bits used in this ex-

periment contains a 50.4/49.6 mixture of zeros and ones, respectively. As an aside, this one case

121

demonstrates the value of the hard limiter for FSK-based receivers. At higher bit rates, the simu-

lator‟s accuracy decreases. It produces the worst results at 1250 bps, when the symbol duration is

roughly equal to the delay spread of the channel.

In conclusion, using impulse response measurements to simulate a time-invariant channel

is very accurate when the symbol duration exceeds the multipath spread of the channel and no ISI

exists. The accuracy drops slightly when the symbol time is less than the channel‟s delay spread.

This method, however, becomes error-prone when the symbol duration is very close to the length

of the delay spread, since a small discrepancy between the estimated and actual channel responses

can lead to very different results at the receiver. The simulator seems to perform well for both

FSK and PSK signals transmitted at various carrier frequencies, though it works best when the

system has linear frequency and phase response. Unfortunately, there is no data describing the

simulator‟s accuracy for time-variant channels such as the Hudson River estuary. The model

might be too simplistic to generate accurate BERs without the inclusion of varying impulse re-

sponse estimates and fading. More details about future plans are found in Section 3.7.

3.5 Implementation

OMNeT++ 4.0 was chosen as the platform for this simulation because of its clean archi-

tecture and relative ease of development. Other platforms were considered and eliminated be-

cause of significant shortcomings. OPNET is perhaps the largest commercial network simulator

[OPNET 2010]. While this software seems to do everything one could imagine, it is not easy to

develop, debug, or maintain OPNET applications. In fact, after taking a 3-day course at their

headquarters, one leaves with only a superficial understanding of where controls are located in

the GUI and how to produce some performance metrics for a simple network topology. Worse,

OPNET has numerous parameters, and it is not obvious which ones should be changed to model

certain behaviors. Additionally, OPNET results are hard to understand because details about

122

what is going on under the hood are concealed. ns-2 is popular in the academic world, but has

been in a state of transition for several years since the introduction of ns-3. While development

of both platforms is ongoing, ns-3 is not backwards compatible with ns-2, nor does it have all the

models that ns-2 currently has. In addition, it is not uncommon to see disorganized class files

with large blocks of code commented out in ns-2. (For instance, look at mac/channel.cc in ns-

allinone-2.34.) Therefore, like OPNET, ns leaves one feeling uneasy about the clarity, accuracy,

and interactions among the underlying algorithms that produce simulation results. Finally, the

architecture is not conducive to building a channel and PHY layer simulation. Currently, the

channel object tied in with MAC layer objects, which violates conventional software engineering

paradigms that promote creating independent, reusable blocks of code. Should PHY also be

squeezed into the same location, as it was in Aqua-Sim, since it logically fits between the channel

and MAC layer? While doing so is easier than restructuring the code, it perpetuates bad practice

which will render creating future enhancements even more difficult.

OMNeT++, on the other hand, had just been upgraded to version 4.0 in February 2009

and provides a simple solution to the problem at hand. Unlike the other platforms, OMNeT++ is

only a discrete event simulator. It does not include default network algorithms that the user must

override, modify, or parameterize in unobvious ways. It offers a clean framework that allows

developers to create network models as they see fit. Since the model described in this chapter

relies on MATLAB for the computationally heavy signal processing routines, a simple frame-

work for the channel and various network layers is all that is needed. Thus, development moved

forward with OMNeT++ and was integrated with MATLAB for the modulation, convolution, and

demodulation routines.

While it is beyond the scope of this dissertation to explain every detail about the imple-

mentation of the simulator, it is worth mentioning the configuration and the means of integrating

123

OMNeT++ and MATLAB. Note that the following description applies to the Linux operating

system. The simulation can also run on Windows, but the minor variations in the process are not

described here. Ubuntu Linux 9.10 x64, MATLAB R2009b, and OMNeT++ 4.0 were used. The

simplest way to explain this material is to walk through an example. As previously mentioned,

all signal processing routines are implemented in MATLAB, including the simple function for

calculating transmission loss across the channel, as described in Section 3.3.2. Figure 3-18 shows

the body of the function, which is saved in the M-file getTransmissionLossDB.m.

function transmissionLossDB = getTransmissionLossDB(linkDistanceInMeters)

 transmissionLossDB = 10 * log10(linkDistanceInMeters) + ...

 0.058 * linkDistanceInMeters;

Figure 3-18: MATLAB code to calculate the transmission loss over the acoustic link.

 This function and several others are grouped together into one library libchannel for the

underwater channel, while a separate group of files comprises libphy, the library responsible for

tasks associated with the PHY layer of a network stack. Continuing with the transmission loss

example, the MATLAB compiler mcc generates the libchannel.so library. It is convenient to

write a short shell script for MATLAB build process, as in Figure 3-19. For clarity when specify-

ing library paths in OMNeT++, the shared objects are copied into the lib directory, which is lo-

cated within the main directory of the simulation.

#!/bin/sh

rm -f *~

mcc -B csharedlib:libchannel -v getAverageSoundVelocity.m getNoiseLevelDB.m

getTransmissionLossDB.m simulateChannel.m fconv.m

mcc -B csharedlib:libphy -v modulateFSK.m demodulateFSK.m modulatePSK.m

demodulatePSK.m chirp.m filterSignal.m hardlimit.m

cp libchannel.so libphy.so ../lib/

Figure 3-19: Bash shell script for building MATLAB shared libraries used in the simulator.

124

 After compiling the libraries, the next step is to integrate the MATLAB functions with

the OMNeT++ simulation. Since the initialization functions must be called once and only once,

the calls cannot be placed inside the constructor for the UWChannel or Phy objects, since every

time an object is created the initialization routine will run. The following solution circumvents

this problem:

1) Create a main.cc file for the simulation. The contents of the file can be identical to that of

path-to-omnetpp-4.0/src/envir/main.cc, as long as the include path contains all the directories

required for compilation.

2) Put the initialization code before the call to setupUserInterface(argc, argv, NULL) and ter-

mination code after it.

Appendix B.6 lists the code for the main function of the simulation which includes calls to initia-

lization and termination routines.

 After the libraries are initialized, the exported MATLAB functions can be called from

OMNeT++. Input and output parameters are of type mxArray. Even a simple data type must be

converted to an array of one element. Figure 3-20 shows how the function signature for trans-

missionLossDB from Figure 3-18 looks when compiled into a C shared library:

extern LIB_libchannel_C_API bool MW_CALL_CONV

mlfGetTransmissionLossDB(int nargout, mxArray** transmissionLossDB,

 mxArray* linkDistanceInMeters);

Figure 3-20: Function signature for mlfGetTransmissionLossDB in C shared library.

When calling mlfGetTransmissionLossDB, double linkDistanceInMeters is first converted

to a scalar, double-precision array x1_ptr. The output of the function is stored in the reference

y1_ptr, and the number of output arguments is set to 1. The output is then converted back to an

array of doubles via mxGetPr, of which the first and only element is accessed with the array index

[0]. Finally, the memory is deallocated with calls to mxDestroyArray, and the pointers are set to

125

NULL. Figure 3-21 shows the C code to obtain the value of transmission loss from the MATLAB

library.

mxArray *x1_ptr;

mxArray *y1_ptr = NULL;

double linkDistanceInMeters = 505;

double transmissionLossDB;

x1_ptr = mxCreateDoubleScalar(linkDistanceInMeters);

// Call the implementation function for transmission loss

mlfGetTransmissionLossDB(1, &y1_ptr, x1_ptr);

transmissionLossDB = mxGetPr(y1_ptr)[0];

printf("Transmission loss : %.2f dB\n", transmissionLossDB);

mxDestroyArray(x1_ptr); x1_ptr = NULL;

mxDestroyArray(y1_ptr); y1_ptr = NULL;

Figure 3-21: C code that calls the MATLAB library to obtain the value of transmission loss over a

505-m acoustic link.

3.6 Simulation Output

Figure 3-22: Graphical representation of OMNeT++ simulation.

126

The OMNeT++ simulation has a graphical representation of the network to visualize how

packets move among the layers of the network stack, nodes, and channel. When the simulation is

active, a red dot moves along the path from source to destination. Figure 3-22 shows the graphi-

cal representation of the OMNeT++ simulation. It contains two nodes and tests communication

from the designated transmitter node[0] to the receiver node[1]. The red dot in the node[0] win-

dow indicates that the packet is passing from the link layer down to the PHY layer of the network

stack.

Figure 3-23 depicts the OMNeT++ Tk environment. The majority of the window is oc-

cupied by a text area which displays the simulation‟s log. This log contains information about the

initialization process as well as the creation, departure, and arrival times of packets.

Figure 3-23: OMNeT++ Tk environment.

127

Finally, and most importantly, text output about the channel and BER of packets is dis-

played in the terminal from which the executable was run. Figure 3-24 shows the output pro-

duced for the second datagram generated by node[0]. The complete set of transmitted bits is dis-

played, followed by the source level, transmission loss, and noise level of the channel, which are

used to compute the SNR of the received waveform. The filename of the randomly chosen im-

pulse response is printed, followed by the BER, received bits, and expected and actual payloads.

Additional pieces of relevant information, including the type of modulation and number of sam-

ples before and after convolution, are displayed for completeness.

Generating datagram 2...

Bits sent:

10001010:01010100:00000000:10111110:00000000:00000000:00000000:00000001

01010100:01101000:01100101:00100000:01010101:00101110:01010011:00101110

00100000:01001000:01101111:01110101:01110011:01100101:00100000:01101111

01100110:00100000:01010010:01100101:01110000:01110010:01100101:01110011

01100101:01101110:01110100:01100001:01110100:01101001:01110110:01100101

01110011:00100000:01110110:01101111:01110100:01100101:01100100:00100000

01111001:01100101:01110011:01110100:01100101:01110010:01100100:01100001

01111001:00100000:01110100:01101111:00100000:01100001:01100100:01101101

01101111:01101110:01101001:01110011:01101000:00100000:01010111:01101001

01101100:01110011:01101111:01101110:00100000:01101111:01110110:01100101

01110010:00100000:01110100:01101000:01100101:00100000:01100011:01101111

01101101:01101101:01100101:01101110:01110100:00101110:00100000:01001100

01101111:01110101:01110000:01100001:01110011:01110011:01101001:00100000

01110011:01100001:01101001:01100100:00100000:01110011:01101001:01101101

01101001:01101100:01100001:01110010:00100000:01100010:01100101:01101000

01100001:01110110:01101001:01101111:01110010:00100000:01110111:01101111

01110101:01101100:01100100:00100000:01100010:01100101:00100000:01110111

01101001:01101100:01100100:01101100:01111001:00100000:01110101:01101110

01100001:01100011:01100011:01100101:01110000:01110100:01100001:01100010

01101100:01100101:00100000:01101001:01101110:00100000:01110100:01101000

01100101:00100000:01010110:01101001:01110010:01100111:01101001:01101110

01101001:01100001:00100000:01001000:01101111:01110101:01110011:01100101

00100000:01101111:01100110:00100000:01000100:01100101:01101100:01100101

01100111:01100001:01110100:01100101:01110011:00101110:

PSK-modulated data in 166800 samples.

Source level : 120.00 dB

Transmission loss : 56.32 dB

Noise level : 33.82 dB

SNR : 29.86 dB

Opening IR file data/IR_505m/IR_277.wav.

Number of samples in packet after convolution: 176400

Demodulating 190 bytes.

BER: 4.67%

Bits received:

10001010:01010100:00000000:10111110:00000000:00000000:00000000:00000001

01010110:01101000:01110101:00100000:01010101:00101111:01010011:00101111

00100000:01001000:01101111:01110101:01110011:01100101:00100000:01101111

Signal/channel properties

Bit error rate

128

01110111:00110000:01010010:01110101:01110000:01110010:01110101:01110011

01100101:00101111:00110100:00110001:01110100:01101001:01110111:01110101

00110011:00100000:01110111:01101111:01110100:00110101:01100100:00100000

01111001:01100101:01110011:01110100:00100101:01110010:01110100:00100001

01111001:00100000:01110100:01101111:00100000:01100001:01100100:01101101

01101111:01101110:00101001:01110011:01101000:00100000:01010111:01101001

01101100:01110011:01101111:01101110:00100000:00101111:01110110:00110101

01110010:00100000:01110100:01101000:01110101:00100000:01100011:01101111

01101101:01101101:01100101:00101110:00110100:00101111:00100000:01001100

00101111:01110101:01110000:01100001:01110011:01110011:01101001:00100000

01110011:01100001:01101001:01100100:00100000:00110011:01101001:01101101

01101001:01101100:00100001:01110010:00100000:01100011:01110101:00101000

01100001:01110111:00101001:01101111:01110010:00100000:00110011:01101111

01110101:00101100:00100100:00100000:01100011:01110101:10100000:01110111

01101001:01101100:01110100:00101100:00111001:00100000:01110101:01101111

00110001:01100011:01100011:01100101:00110000:01110100:00110001:01100011

01101100:00100101:00100000:01101001:01101111:00100000:01110100:00101000

01100101:00100000:01010110:01101001:01110010:01110111:00101001:01101110

00101001:01100001:00100000:01001000:01101111:01110101:01111001:01100101

00100000:01101111:01110111:00110000:01000100:00100101:01101110:01110101

01100111:01100001:01110100:00100101:01110011:00101110:

Expected payload: The U.S. House of Representatives voted yesterday to admonish

Wilson over the comment. Loupassi said similar behavior would be wildly

unacceptable in the Virginia House of Delegates.

Actual payload : Vhu U/S/ House ow0Rupruse/41tiwu3 wot5d yest%rt!y to admon)sh

Wilson /v5r thu comme.4/ L/upassi said 3imil!r cu(aw)or 3ou,$ cu.wilt,9

uo1cce0t1cl% io t(e Virw)n)a Houye ow0D%nugat%s.

Figure 3-24: Terminal output of OMNeT++ simulation.

3.7 Future Work

There are several obvious opportunities for future work, all of which are somewhat inter-

related. The first place to start is in evaluating the current single impulse response model for a

time-variant channel such as the Hudson River estuary. It would no longer be sufficient to use a

long chirp at the start of each test. The conditions will change much too rapidly for the impulse

response estimate to remain valid for several minutes. In reality the conditions change too rapidly

to remain constant across the duration of a packet transmission, with a coherence time of only 50

ms (see Section 2.5.9). However, since signals used to accurately estimate the channel cannot be

transmitted at the same time as packets, the next best approach is to estimate the channel from the

pilot signal used at the start of each packet. The rest of the procedure would remain intact, where

the measured BER for each packet is compared to that which is obtained when convolving an

impulse response estimate with the original waveform. Again, because packets are so much

129

longer than the channel‟s coherence time, it is expected that this method will not provide accurate

results.

If the current model is indeed inaccurate, the next step would be to look into two dimen-

sional convolution, as in Diamant and Chorev‟s IRM evaluation [Diamant 2005]. Several details

must be analyzed carefully, including how to accurately construct the matrix of impulse response

estimates. The creators of IRM, unfortunately, do not provide such details in their paper. For

instance, if impulse response estimates are taken every 50 ms, is the matrix constructed so that the

50-ms blocks of samples all get the same copy of the impulse response estimate? Is there a way

to interpolate the values between estimates to provide a more gradual transition between the mea-

surements? If so, can the values be computed in reasonable time? As of now, these questions

have not been investigated, at least not from the perspective of underwater acoustic communica-

tion.

The next iteration of the simulation must also account for multipath fading. Jakes‟s mod-

el can simulate a Rayleigh fading channel, MATLAB‟s Communications Blockset can model a

Ricean fading channel, and Yip and Ng have developed a simulation model for Nakagami-m fad-

ing channels, where m < 1 [Yip 2000], which also covers the Gamma distribution. It might also

be possible to use 2D convolution to partially account for fading, as the correlation coefficient

will change in each impulse response estimate. Of course, each impulse response estimate must

not be normalized to the same maximum value. However, this approach is not nearly as viable as

the aforementioned models, since there is still only one estimate every 50 ms, and fading takes

place on a much shorter time scale. Perhaps interpolated impulse responses can help, but it seems

that too many interpolated estimates will be required to accurately model fading. If none of the

suggested methods work correctly, one can always take the amplitude values from the recorded

comb signal and apply them to the waveform in the simulator.

130

When the answers to these questions are known, or at least understood in greater detail,

the simulator can be extended with other types of modulation techniques and methods of equali-

zation. Upon the completion of that phase, the simulator would contain a very thorough model of

a specific underwater channel and PHY layer of a network stack. Looking forward, one can envi-

sion using the simulator to test various MAC protocols or even investigate the potential benefits

of cross-layer protocols. OMNeT++ makes such extensions easy.

131

Chapter 4

Softwater Modem

A Software Modem for Underwater Acoustic Communication

4.1 Overview

The Softwater Modem is a software modem for underwater acoustic communication that

enables users to run applications on the familiar sockets interface without any additional hard-

ware except for transducers and associated amplification. Data transmission and acquisition is

performed by any ordinary sound card. A standard TCP or UDP transport protocol runs on top of

IP, which runs on top of custom datalink and PHY layers that constitute the modem and are im-

plemented in Java outside the operating system. The modem process is seamlessly made part of

the protocol stack via the Linux TUN driver as shown in Figure 4-2. The modem uses FDMA

with binary and 4-FSK in any frequency band supported by the computer‟s sound card and can

run at any bit rate supplied by the user. The transmitter sends a per-packet LFM chirp signal that

the receiver uses for packet synchronization as well as channel estimation, with the option of ap-

plying impulse response estimates to channel equalization. Frames can contain up to 255 bytes

and are encoded with Reed-Solomon codes, for which the user can specify the number of parity

bytes. The chapter describes in detail the architecture of this system, which currently demon-

strates two-way communication as well as real-time channel estimation techniques. Additionally,

it provides estimates of the processing time required per frame and the performance as given by

decreasing BERs for increasing normalized SNRs in an AWGN channel.

4.2 Motivation

As discussed in Chapter 2, there is no such thing as a typical underwater acoustic com-

munication channel. The large variation in channel conditions among different locations – espe-

132

cially the difference between deep water and shallow water – suggest that vastly different com-

munication parameters (modulation technique, frequency band, frame length, error correction

methods, etc.) would be optimal for different locations. Existing acoustic modems are imple-

mented at least partly with custom hardware and paired with a fixed-point or floating-point DSP

[Benthos 2010; Freitag 2005]. Such solutions typically offer a limited choice of operating para-

meters. Furthermore, in the case of commercial products, modem parameters are often chosen

based on worst-case channel assumptions in order to maximize the modem‟s utility, necessitating

a series of products, each tailored to specific environments that vary in depth, link distance, and

expected severity of multipath [LinkQuest 2010], and each likely to be ill-suited for channels

with properties differing from those for which the modem is customized. While logical, this is an

unfortunate development because flexible, optimized communication is especially important in

the bandwidth-limited underwater environment.

Recently there has been great interest in “software defined radio,” (SDR) wherein soft-

ware performs packet transmission / receipt functions and adjusts RF communication parameters

on the fly in response to changing channel conditions. The success of SDR as applied to RF has

been constrained by the fact that RF channels operate at high speed (e.g., multi-megabits per

second), placing very tight real-time constraints on the necessary signal processing. The under-

water acoustic environment is better suited for an SDR-like approach because acoustic link

speeds are so much slower than RF links. There is plenty of time for modern hardware to per-

form even sophisticated signal processing needed to adapt to the challenging and rapidly chang-

ing underwater channel.

Accordingly, an all-software acoustic modem was built for underwater operation. The

modem is able to sense and adapt to its environment on a very short time scale. In particular, a

“sounding signal” precedes every packet and is used by the receiver to compute and apply the

133

channel‟s inverse impulse response to the modulated data signal that follows the sounding signal.

In this way the receiver mitigates channel distortion on a packet-by-packet basis. While this ap-

proach is not as rapidly adaptive as a hardware DFE that can update filter taps on a symbol-by-

symbol basis, data suggest that this approach should be able to cope with channels where the co-

herence time is at least on the order of the duration of a communication packet, as seen in places

like the Massachusetts Bay east of Boston [Yang 2004].

Besides being able to adapt to channel conditions, a software modem offers the advantage

of being far less costly than current hardware devices – such as the Benthos 013424 LF (9-14

kHz) omnidirectional modem at $8800/pair as of April 2009 – and of being easily configurable.

Modem parameters can be selected to match the environment, thereby avoiding worst case as-

sumptions and making communication more efficient. The carrier frequency, symbol time, and

LFM chirp guard time are among the parameters that users can adjust. Moreover, this modem has

the added benefit of being written in open source software that requires no license fees.

An additional advantage of this software architecture is that it supports TCP/IP based

communication. Applications written to use the popular sockets interface can run unaltered on

top of the modem layer, any number simultaneously. The effect is as if an Ethernet had been re-

placed by a (much slower) acoustic channel.

4.3 Related Work

There are several underwater acoustic modems in existence, either as commercial produc-

tions or research efforts, which make use of custom hardware to varying degrees. According to

the specifications, the Benthos ATM series operates at baud rates of 140 – 15,360 bps, has a BER

of 10
-7

 with high SNR, offers data redundancy, 1/2 rate convolutional coding, multipath guard

period selection, and MFSK and PSK modulation schemes, and commonly operates over dis-

tances of 2 – 6 km [Benthos 2010]. LinkQuest offers many different UWM models, each of

134

which is tailored for a specific channel including “near vertical or horizontal” links and “long-

range shallow to very shallow environments with very harsh multipath conditions” [LinkQuest

2010]. Some UWM models work in depths of 7000 meters while others are good for only 200

meters. Some have a payload data rate in the range of 80 to 320 bps, while others offer rates as

high as 14,000 bps. DSPComm‟s AquaComm modem uses DSSS/OFDM to achieve data rates of

100 – 480 bps (depending on the model) with a BER of at most 10
-6

 over links of up to 3 km

[DSPComm 2010]. The Tritech AM-300 Acoustic Modem features two types of signaling to

cover different types of channels [Tritech 2010]. Its spread spectrum option works between 25 –

100 bps, offering reliable data transfer in channels with SNR as low as -6 dB. The QPSK data

link operates between 8 – 16 kbps, allowing for the transfer of high volumes of data. The specifi-

cations state that when using an array of hydrophones at the receiver, it is possible to transfer data

over a 2-km horizontal link at 16 kbps.

The WHOI Micro-Modem, whose features and performance was discussed in detail in

Section 2.5.11, offers FH-FSK signaling at a default data rate of 80 bps and BPSK and QPSK

signaling with data rates up to 5 kbps [Freitag 2005]. The Reconfigurable Modem (rModem)

[Sozer 2006] was built to simplify experimental studies of algorithms on all layers of the network

stack with rapid prototyping via Simulink tools [Simulink 2010]. It has four input and output

channels, an anti-aliasing filter, 240 kHz analog-to-digital converters (ADC) and digital-to-analog

converters (DAC), automatic gain control (AGC), an FPGA and floating point DSP, and onboard

memory. It was tested in Woods Hole, MA, in 2006 in a store-and-forward network of four

nodes. Intermediate nodes time-reversed the signal before retransmitting it with a new preamble

and training sequence. However, demodulation and detection, the most basic functionality of a

modem, was not tested and left as the subject of a future experiment, which does not seem to have

been conducted (or may just be undocumented).

135

Several purely software-defined modem implementations also exist. Soundmodem was

one of the first packet radio platforms made to run on a standard PC with a sound card [Sailer

2000]. It offers several modulation techniques, including FSK, PSK, and QPSK, and can be in-

terfaced with the AX.25 stack on Windows, Linux, or UNIX. Soundmodem was tested in the

office tub environment as well as with a cable attached directly from the line output of one com-

puter to the mic input of the other computer. In general, the software seems to have synchroniza-

tion problems, causing very few packets to be received correctly. A thorough walk-through of

the code for FSK did not produce a clear picture of what was going wrong with reception but did

reveal some programming errors.

With J-QAM [Olds 2008], high data rates (up to 400 kbps) have been achieved by using a

PC sound card with RF transmission. Since the phase-coherent detection methods necessary for

QAM modulation generally work well only in vertical underwater acoustic channels with little

multipath distortion [Pelekanakis 2003] and funding ran out, J-QAM was not investigated further.

However, if funding becomes available for more experiments in the Hudson River estuary, J-

QAM is among the applications to test because it is well-written and thoroughly documented, and

would lay to rest questions about using QAM in extremely shallow, horizontal channels.

GNU Radio [GNU 2010] is probably the largest, most flexible SDR platform to date. It

features numerous modulation/demodulation and signal processing techniques for radio commu-

nication and integrates easily with the Universal Software Radio Peripheral (USRP), an

ADC/DAC motherboard with a USB interface [Ettus 2010]. Signal processing blocks are written

in C++, while flow graphs that connect the signal processing blocks are written in Python. Figure

4-1 shows a flow graph constructed in GRC for a GMSK
12

 modulator. Unfortunately, GNU Ra-

12 Minimum Shift Keying (MSK) is a digital modulation scheme where the phase remains continuous while the fre-

quency changes. To reduce side lobes in MSK transmissions, MSK is augmented with a pre-modulation Gaussian-

shaped low-pass filter. This enhanced technique is known as Gaussian Minimum Shift Keying (GMSK).

136

dio has a steep learning curve and is in a constant state of change. When it was first considered

for use in the Softwater Modem, noncoherent FSK was the modulation technique of choice, since

it is robust to multipath fading channels. However, FSK modulation was removed from GNU

Radio‟s source tree because it didn‟t work correctly and no one was maintaining it. In addition,

GNU Radio is limited in that it operates on streams of data. It is not oriented to processing flows

of variable-length packets commonly used in underwater acoustic communication systems.

Figure 4-1: GRC (GNU Radio Companion) flow graph [Miller 2009].

As GNU Radio matures, some efforts are being made to use it for underwater acoustic

communication, as in the Underwater Acoustic Networking plaTform (UANT) developed by the

Networked and Embedded Systems Laboratory at UCLA [Torres 2009]. UANT uses GNU Radio

to achieve configurability at the physical layer. TinyOS has been adopted for the use on the net-

work platform, since it provides a full network stack. UANT affords users the flexibility to

change the properties of the acoustic modem at run time to adapt to the dynamic characteristics of

137

the underwater channel, though none of this functionality is automated. In reality, UANT seems

to be a nice GUI on top of a network stack built upon GNU Radio. Its limitations are inherently

those of GNU Radio.

Several other standalone modem prototypes have been developed over the years. The

prototype from UCSB [Fu 2006] combines DSP techniques, hardware-software integration, and

network protocols, but operates at a fixed rate of 161 bps. The design from Yuan-Ze University

uses a PC sound card with MATLAB as an SDR OFDM communication system [Hwang 2003];

however, the system cannot operate in real time. Furthermore, the initial code optimizations per-

formed at UCONN [Yan 2007] did not result in a real-time DSP-based OFDM receiver. Finally,

by 2009 researchers at UCONN produced the Aqua-fModem, a real-time OFDM modem proto-

type that uses a bandwidth of 5.5 kHz and yields an overall data rate of 3.1 kbps after 1/2 rate

nonbinary LDPC (low-density parity-check) coding and QPSK modulation [Zhou 2009]. No oth-

er information about this system is available.

Since each of the aforementioned systems has limitations, the focus here is shifted to the

implementation of a flexible software modem that performs well in various types of underwater

acoustic channels while requiring reasonable amounts of processing power, as those found in an

average laptop PC. The original goal was to develop a platform with several modula-

tion/demodulation techniques that would be able to sense and adapt to the channel‟s changing

conditions and propagate that information to neighboring nodes via a handshaking protocol that

runs on a control channel. However, since the amount of development time proved to be too

much for one person, the project was scaled back. While the modem, presently called the Soft-

water Modem, currently offers only binary and 4-FSK, it has adjustable parameters that allow it

to perform well in many environments, in particular, shallow water channels. In addition to carri-

er frequency and symbol rate parameters, the Softwater Modem has parameters for setting the

138

threshold for frame detection and length of the chirp signal and guard time, toggling between half

and full duplex, adjusting the number of payload and parity bytes, and properly estimating the

channel‟s impulse response as to apply an inverse filter (zero-forcing equalizer). All of these fea-

tures can be exploited in future work that proceeds with the original goal for the project. Fur-

thermore, unlike most previous efforts, the Software Modem permits users to run existing TCP/IP

applications across nodes in the system.

4.4 System Architecture

4.4.1 Software Architecture

Figure 4-2: Software architecture of acoustic modem, with arrows depicting the flow of data generat-

ed by the network application through the system and down to the sound card, where it is emitted as

an analog bandpass modulated waveform.

The overall architecture of the system includes three layers of user space applications.

The highest layer is the application itself, which can use either TCP or UDP. The lowest layer is

the Java application that implements the functionality of an acoustic modem. Between the two is

the tunnel relay application, which is responsible for passing IP datagrams between the network

139

application and Java modem. Figure 4-2 depicts the overall architecture of the system and shows

how each of the component applications is linked.

The tunnel relay application is written in C and utilizes the Linux TUN device [Kras-

nyansky 2010]. If use with Windows is required, the tunnel relay program can be rewritten to

exploit the Microsoft TUN Miniport Adapter instead. The TUN device is a virtual point-to-point

network device designed to provide low level kernel support for IP tunneling. It interfaces with a

user-space application via the /dev/net/tunX character device and the tunX virtual point-to-point

interface. A user-space application can write datagrams to /dev/net/tunX, and the kernel will re-

ceive them from the tunX interface. Similarly, every datagram that the kernel writes to the inter-

face can be read from the /dev/net/tunX device.

The tunX device is bound to a private IP address in the 10.0.0.0 – 10.255.255.255 range

to avoid interference with applications running on the Internet. The route command informs the

kernel that datagrams destined for a particular host (or network) should be associated with the

tunX device. Therefore, it is possible to build a routing table specifically for the independent

acoustic network.

The tunnel relay application is also responsible for setting the MTU of the tunX device.

This process informs the kernel about how to break large data streams into datagrams of manage-

able size, most often of which are very small in comparison to Ethernet (<255 bytes vs. 1500

bytes) for transmission through the underwater channel. An application that wishes to have pre-

cise control over packet construction can query the OS to determine the MTU of the tunX device

to ensure it constructs datagrams that fit into MTU bytes.

The tunnel relay application communicates with the Java modem via UDP, as sockets are

the only form of IPC that works with Java. Both the tunnel relay application and Java modem

bind to the local loopback IP address, but with different port numbers, to allow full-duplex com-

140

munication between the two processes. Thus, the Java modem listens on one socket for data-

grams from the tunX device that need to be transmitted acoustically, while it sends datagrams that

have been received acoustically on the other socket where the tunnel relay program is listening.

To better understand how this system works, it is helpful to trace the steps that a message

takes as it passes from the network application to the sound card. When the network application

has data to send, it writes the data to a socket. The data passes to the Linux kernel, where trans-

port and IP headers are added. If the destination address is one mapped to the TUN device, the

datagram will arrive there, enabling the tunnel relay application to forward it to the UDP port

where the Java modem is listening. If the destination address is not mapped to the TUN device,

the datagram will go directly to the link layer of the kernel and out through the computer‟s net-

work interface card, allowing the acoustic network to peacefully coexist with other networks on

the system. The Java modem adds its own link layer headers to the datagram, and converts the

frame into a modulated acoustic waveform. The modem then writes the acoustic signal to the

output device in the Java Sound API, which actually makes use of ALSA (Advanced Linux

Sound Architecture) in the JVM. The ALSA library traps to the kernel, which handles device

access, and sends the signal to the output of the sound card. The process by which the system

receives an acoustic frame is essentially the reverse of the aforementioned description.

4.4.2 Associated Hardware

Two laptops have been used in the development of this system, a Lenovo T60p and a

newer T500. The T60p has a T7200 dual-core Intel processor running at 2.0 GHz, 2 GB of mem-

ory, and an ADI1981 codec running on top of the integrated Intel high-definition audio (HDA)

controller. The sound card supports a maximum sampling rate of 48 kHz. The T500 has a P8400

dual-core Intel processor running at 2.26 GHz, 2 GB of memory, and a Conexant CX20561 codec

paired with an Intel HDA controller. This integrated sound card supports a maximum sampling

141

rate of 192 kHz. For the sake of comparing software performance statistics, a desktop PC with a

Q6600 quad-core Intel processor over-clocked to 3.0 GHz, 8 GB of memory, and integrated

ADI1988/HDA audio was also brought in. All three systems were running Ubuntu Intrepid 8.10

with gcc 4.3.2, ALSA 1.0.17, and Java 1.6.0 Update 13.

4.5 Modem Architecture

The modem portion of the system is written entirely in Java. While the use of Java does

come at a cost to execution speed, the laptops are still able to keep up with continuously demodu-

lating packets. Moreover, the benefits of platform independence; modular, extensible code; and

relatively fast development time further support the use of Java for the modem prototype.

Figure 4-3: Processing blocks within the Java modem.

The modem functionality is divided into two main tasks, transmit and receive, which can

be executed in parallel. Both of these functions are implemented as a series of stages which are

processed by threaded objects. Pairs of adjacent stages communicate via a thread-safe queue,

where one stage places its output on the queue for the next stage to use as its input. Figure 4-3

summarizes the processing blocks that comprise the Java acoustic modem.

4.5.1 Transmitter Design

The transmitter consists of three stages – the source encoder, the modulator, and playback

mechanism. The encoder reads incoming datagrams from the UDP socket attached to the tunnel

relay application, wraps them in a frame header, and optionally applies Reed-Solomon codes.

142

The modulator converts the incoming byte-oriented data frame into symbols of 0s and 1s for bi-

nary FSK (or the 2-bit symbols 00, 01, 10, and 11 for 4-FSK) and then translates the symbols into

the samples of the sine wave that correspond to the frequency representing a given symbol. The

modulator also prepends an LFM chirp signal and guard time block to the beginning of a data

frame for synchronization and channel estimation purposes at the receiver. Finally, the transmit-

ter takes the buffered modulated signal and sends it to the sound card for playback. The transmit-

ter can also optionally record each outgoing modulated data frame in a wav file for future refer-

ence.

4.5.2 Receiver Design

The receiver consists of three stages as well – the correlator, demodulator, and decoder.

The correlator continually reads blocks of samples from the sound card. The block itself must be

twice as long as the LFM chirp signal that precedes each packet, so that the chirp signal is guar-

anteed to fit within two consecutive blocks. For every incoming block, the correlator concate-

nates it with the previous block before using cross-correlation to detect the start of a frame. If a

frame is detected, the exact number of samples within a frame is buffered and then placed on the

queue for the demodulator to pick up.

The demodulator converts an acoustic signal into a bit stream of 0s and 1s. It optionally

takes the impulse response obtained during frame detection, inverts it with the Levinson-Durbin

algorithm [Proakis 2007], and convolves it with the signal as a means of performing channel

equalization on a packet-by-packet basis. Regardless of whether inverse filtering is applied, the

demodulator bandpass filters the signal, holds a tournament to see which of the carriers has the

strongest signal over the duration of a symbol, and outputs the corresponding symbol (0 or 1 for

binary FSK; 00, 01, 10, 11 for 4-FSK). It also optionally computes the SNR for the frame before

placing it on the queue for the decoder to pick up. At the user‟s request, the demodulator can also

143

record each incoming unprocessed frame and demodulated frame in a separate wav file and each

impulse response and inverse impulse response in a csv file, which can be post-processed with the

MATLAB scripts included with the source code.

The decoder applies Reed-Solomon codes to an incoming data frame and allows the user

to know if no errors were detected, if errors were found and corrected, or if errors were found but

could not be corrected. The decoder also verifies the CRC
13

 in the header before extracting the

frame payload, or IP datagram, and sending it out to the TUN device via the UDP socket.

4.6 Frame Format

All data frames begin with an LFM chirp signal followed by a block of silence, known as

the guard time. The duration of both the chirp signal and guard time can be configured by the

user. Modulated data appears after the guard time, beginning with the frame header. The 4-byte

frame header format is extremely simple, containing only two fields, a 16-bit CRC and 16-bit

length attribute. All other information relevant for communication is contained in the headers for

the IP and the transport layer, whether TCP or UDP. The IP header is 20 bytes, while the TCP

and UDP headers are 20 and 8 bytes, respectively. The TCP header can be longer if options are

enabled within the operating system‟s network stack. The actual payload appears after all head-

ers and can fill the remaining bytes of the frame up to the 255-byte limit.

Reed-Solomon (R-S) codes can be enabled by the user. The R-S codes can contain an

arbitrary number of parity bytes as long as the sum of parity, header, and payload bytes does not

exceed the 255-byte limit. Since R-S codes operating on 8-bit symbols can have n = 2
8
-1 = 255

symbols per block, 255 was chosen as the upper bound on frame size. In comparison with the

frame sizes supported by the Micro-Modem [Freitag 2005], 255 is a reasonable limit and should

13 When there are too many errors in the frame, R-S can pick a valid codeword that is not the codeword that was trans-

mitted. With a valid but incorrect codeword selected, R-S will not indicate any error syndrome, and the only way to

know for certain whether the data is correct is with some other detection method, like a CRC [Jacobsen 2008].

144

be more than adequate for underwater channels requiring use of noncoherent FSK demodulation.

If enabled, the R-S parity bytes appear after the frame header and before the IP header. Figure

4-4 depicts the format of a data frame for the Softwater Modem. Note that the sizes of the blocks

within the diagram are not drawn to scale.

Figure 4-4: Format of a data frame.

4.7 Signal Processing

As described in Section 3.3.4, the modulation index is set to 1 to obtain reasonable per-

formance with noncoherent FSK detection. In fact, this index value corresponds to the minimum

tone spacing for noncoherent FSK signaling, which occurs when

 (4.1)

where f0 is the frequency of the tone representing a „0‟, f1 is the frequency of the tone representing

a „1‟, and T is the symbol duration, equivalent to 1/R, so that the two tones remain orthogonal

[Sklar 2001]. The same modulation index applies when the modem is operating in 4-FSK mode.

The LFM chirp signal that precedes a frame is generated as an array of floats according to

the formula

 (4.2)

where f0 is the starting frequency at time t = 0 and k is the rate of frequency increase. The chirp

signal covers only the frequency band required by the data modulation, or , starting fd Hz

(see Section 3.3.4) lower than the lowest tone in the transmission. If a slow data rate results in a

chirp less than 1 kHz wide, the chirp is expanded to cover 1 full kHz in order to result in a mana-

geable autocorrelation function for use in frame synchronization. A second buffer containing the

145

samples of the reference LFM chirp used to mark incoming data frames is precomputed and

stored at the receiver.

Figure 4-5: Capture/correlate block of receiver.

As seen in Figure 4-5, the receiver continuously reads a block of samples from the audio

device and concatenates it with the previously read block before cross-correlating the samples

with the reference LFM chirp signal. The implementation is based on that in Numerical Recipes

[Press 2007], using FFT to first convert the signals into the corresponding frequency-domain re-

presentations, multiplying the transforms, and returning the result to a time-domain signal via

146

IFFT. The FFT-based cross-correlation routine is orders of magnitude faster than the time-

domain approach, which cannot be executed in real time.

The maximum, minimum, and average (excluding the absolute value of the maximum

and minimum) values of the signal returned by the cross-correlation routine are then computed.

If the current iteration is the first time the correlation exceeds the user-defined multiple of the

average correlation, or if the maximum value is greater than the maximum found during the pre-

vious iteration, the index of the maximum value is marked as the potential starting point of a data

frame. If the user specified that the modem should look for significant arrivals occurring before

the strongest component, the modem does so and buffers the resulting estimate of the channel‟s

impulse response at the time the data frame is received. A data frame is deemed present when the

starting sample is marked and the current maximum does not exceed the threshold or the previous

maximum. At this point, the modem begins copying incoming samples to a buffer that is the size

of is MTU + 4 bytes. Once all the samples have arrived, the receiver passes the data buffer, im-

pulse response estimate, and last noise amplitude level to the demodulator block for processing.

If no data frame is present during a given iteration of the loop, the samples are assumed to be

noise, and the noise amplitude is computed and stored, overwriting the previous value.

The demodulator block is comprised of a series of stages that implement noncoherent

FSK detection via the envelope detector. Figure 4-6 illustrates the demodulation process for bi-

nary FSK demodulation, which has the same basic structure as 4-FSK demodulation.

147

Figure 4-6: Stages of noncoherent FSK detection.

The first stage, which serves as a means of channel equalization on a frame-by-frame ba-

sis, is optional. If enabled by the user, this stage takes the impulse response estimate obtained via

the cross-correlation of the received LFM chirp and reference LFM chirp and inverts it by means

of the Levinson-Durbin algorithm. As long as the channel remains fairly constant over the dura-

tion of a data frame and the SNR > 12 dB to prevent noisy impulse response estimates, this me-

thod works to mitigate ISI induced by multipath arrivals and problems with the frequency re-

sponse of the transducers.

Figure 4-7 shows the time-domain view of a portion of a data frame that passed through

an air-based acoustic channel between a pair of desktop Accent Acoustics PC speakers and an

Altec Lansing microphone. The data rate was 2 kbps (symbol time of 0.5 ms), the carrier tones

148

were 4 and 6 kHz, and the 50-ms LFM chirp preceding the data transmission swept from 3 to 7

kHz. The chirp signal exhibits a dip around 4 kHz, the same frequency used to represent „0‟ data

bits. Figure 4-8 shows the delay spread of the channel. Because of this unequal representation of

tones, this data frame could not be successfully demodulated. There were 64 bit errors out of

1184 bits, producing a BER of 5.41%. The default 16 parity bytes were transmitted as well, but

even the R-S codes could not save this frame.

Figure 4-7: Unequalized reception of data frame.

Figure 4-8: Delay spread of channel in 3-7 kHz

band.

Figure 4-9: Inverse impulse response of channel

in 3-7 kHz band.

149

Figure 4-10: Reception of equalized data frame.

The Levinson-Durbin algorithm inverts the channel‟s impulse response h by solving for

hinv in the Toeplitz system , where R is the symmetric Toeplitz matrix containing the

positive lags of h‟s autocorrelation function and q is the Dirac delta function. The inverse im-

pulse response is then convolved with the samples containing the LFM chirp and modulated data

via FFT convolution. Figure 4-9 depicts the inverted form of the impulse response. Figure 4-10

displays the equalized time-domain view of the same data frame shown in Figure 4-7. It is appar-

ent that the inverse filter does not exhibit linear phase, since the guard time between the chirp and

the modulated data does not have 0 mean. However, since the modem has been designed to work

with noncoherent detection, this filter attribute does not pose a problem. Also, the spectral splat-

ter associated with rapidly turning the transmitter on and off becomes more evident after applying

the inverse filter, with large spikes appearing at the beginning and end of the acoustic signals.

While spectral splatter does not degrade performance in a point-to-point system, it is something

to consider when other devices begin sharing the channel, especially one that is bandwidth-

limited. Since Reed-Solomon codes perform well when errors occur in bursts, they have been

built into the system as a means of combating spectral splatter from neighboring devices.

Bandpass filtering is the first mandatory step in the modem‟s implementation of noncohe-

rent detection. When using binary FSK, the incoming signal is passed through two separate fil-

ters (four in 4-FSK) to eliminate signals outside the band corresponding to the tones representing

150

bits. As described in Section 3.3.6, second-order IIR filters based on the design in [Smith 2003]

are used. The filters have been designed to operate with bandwidth 1/T centered on the tones

representing 0s and 1s.

Upon completion of the filtering stage, the resulting signals are passed to the envelope

detection stage, which first applies the Hilbert transform to obtain the imaginary part of a signal

containing only real values. The envelope is then obtained by applying the formula in Equation

(2.22).

Regardless of whether the inverse filter is enabled, the resulting envelopes undergo nor-

malization. This processing block first determines the maximum value in each envelope and then

scales the other envelope(s) so that the maximums are all equal. In practice, this over-simplified

“equalizer” helps to reduce ISI caused by transducers with a non-linear frequency response.

The amplitude comparator produces another intermediate signal that shows which

envelope contains greater amplitude at every sample in the signal. For binary FSK, the compara-

tor subtracts one envelope from the other. With 4-FSK, a simple tournament is held for each

sample to see which of the signals possesses the greatest amplitude, producing a new signal with

only 4 possible values.

Finally, the demodulator makes a decision as to which symbol was present during a given

time period. The modem samples many times per symbol period in an attempt to make the best

decision, at virtually no cost in execution time. Starting at samples corresponding to 60% of the

duration of the symbol and running up to the last sample of the symbol, the modem counts how

many samples correspond to each symbol type. The one with the highest count is selected. In

practice, sampling in the second half of the symbol produces better results, since the recursion of

the IIR filter leads to a “ramp-up” period at the beginning of the pulse and because the filter often

151

exhibits “ringing” shortly after the ramp-up time. Thus, one can effectively work around the neg-

ative effects of IIR filters while benefitting from their computational efficiency.

4.8 Control Interface

The modem allows the user to alter its functionality by editing a text file containing

name/value pairs. Upon startup, the modem parses the properties file and uses the values of the

parameters for its operation. The following options are supported:

CHIRP_MS = <integer>. CHIRP_MS indicates the length in milliseconds of the LFM chirp sig-

nal that precedes frame transmission. If the INVERSE_FILTER option is enabled, the value

should not exceed the coherence time of the channel in order to ensure the channel‟s characteris-

tics have not changed during the transmission of the sounding signal. Ideally, the signal should

be as short as possible, with enough samples to provide a high value of correlation in the presence

of a data frame. 50 ms works well in most applications.

BASE_FREQUENCY_RX / TX = <integer>. This number is the frequency in Hz of the lowest

carrier in the received/transmitted signal.

FULL_DUPLEX = <TRUE/FALSE>. FULL_DUPLEX indicates whether or not the modem

can receive and transmit simultaneously. For testing purposes, if full-duplex operation is enabled,

setting BASE_FREQUENCY_TX to the same frequency as BASE_FREQUENCY_RX will al-

low the modem to demodulate its own transmissions.

GUARD_MS = <integer>. GUARD_MS is the amount of silence that appears after the chirp

signal and before the modulated data. This silence is necessary to obtain a clean impulse re-

sponse estimate. GUARD_MS also dictates the maximum length for which the impulse response

(and possibly its inverse) will be computed. Therefore, it should be set be set to a value that ex-

ceeds the multipath spread of the channel.

IMPULSE_RISE_MS = <decimal>. In case the strongest arrival is not the first component of

the impulse response, setting this option allows the modem to look for components before the

main arrival that exceed the threshold of ¼ the intensity (-6 dB) of the main arrival. This option

is useful when computing the inverse impulse response of the channel. The value is usually

small, not exceeding 1 ms.

INVERSE_FILTER = <TRUE/FALSE>. INVERSE_FILTER indicates whether or not to apply

Levinson-Durbin matrix inversion for channel equalization on a frame-by-frame basis.

NUMBER_OF_CARRIERS = <2/4>. This option indicates if binary or 4-FSK is to be used.

152

PARITY_BYTES = <integer>. PARITY_BYTES indicates the number of bytes used as parity

within R-S codes. The maximum frame size is 255 bytes, of which 4 bytes are used for the frame

header, 20 for the IP header, and 20 for TCP header (and more if options are enabled). Therefore,

the value must be set accordingly to maintain data flow. 16 bytes is the default value.

PAYLOAD_SIZE_IN_BYTES = <integer>. This number indicates the payload size, the size of

the frame excluding the 4 byte header. The maximum frame size is 255 bytes, for which the sum

of PARITY_BYTES, PAYLOAD_SIZE_IN_BYTES, and the 4 byte frame header cannot ex-

ceed.

SYMBOLS_PER_SECOND = <integer>. This option represents the symbol rate of the modem.

For binary FSK, the symbol rate is equivalent to the bit rate, and for 4-FSK, it is equal to ½ the

bit rate.

THRESHOLD = <integer>. This parameter adjusts the mechanism for frame detection. Frames

are detected in a block of samples if correlation = THRESHOLD (average correlation minus

the absolute value of the maximum and absolute value of the minimum within the block).

Other parameters supported by the modem change the sampling rate, output verbosity, number of

channels, and endianness of the samples being read from the sound card and determine whether

SNR should be computed for every data frame received.

4.9 Performance

4.9.1 Computational Performance

Table 4-1: Processing time of subroutines.

Desktop

Laptop

T60p

Laptop

T500

Transmit

a. Modulate 8.00 12.00 13.40

b. Encode Reed-Solomon 9.33 74.40 82.60

Sum (a:b) 17.33 86.40 96.00

Frame duration 1244.00 1244.00 1244.00

Comp Time/Signal Length 1.39 % 6.95 % 7.72 %

Receive

c. Cross-correlation 2.36 5.03 4.46

Block length 85.33 85.33 85.33

Comp Time/Signal Length 2.77% 5.89% 5.23%

Demodulate

d. Levinson-Durbin 3.40 3.80 5.33

e. FFT convolution 29.80 65.00 43.83

f. Bandpass filtering 2.60 3.60 4.16

g. Envelope detection 61.60 117.60 84.50

153

h. Normalizer 1.60 3.70 1.50

i. Comparator 0.40 2.00 0.33

j. Bit Decision 0.40 1.60 0.50

k. Decode Reed-Solomon 1.33 21.40 17.40

l. Write 2 wav files 2.00 3.40 2.60

m. Write IR data to csv file 16.33 55.40 36.00

Sum (d:m) 119.46 277.50 196.15

Frame duration 1244.00 1244.00 1244.00

Comp Time/Signal Length 9.60 % 22.31% 15.77%

The performance of the Softwater Modem has been characterized in terms of its CPU ex-

ecution time and bit error rate. Table 4-1 lists the running times of various methods within the

Java code in milliseconds on three different platforms. JRat [JRat 2010] was used to profile the

application. After compilation the class files were injected with instructions by JRat to enable the

collection of performance statistics. The modem was then run through the JRat agent with the

key options set as follows:

CHIRP_MS = 50

FULL_DUPLEX = TRUE

GUARD_MS = 10

INVERSE_FILTER = TRUE

NUMBER_OF_CARRIERS = 2

PARITY_BYTES = 16

PAYLOAD_SIZE_IN_BYTES = 128

SAMPLING_RATE= 48000

SYMBOLS_PER_SECOND = 1000

For each platform, the values shown in Table 4-1 are the averages computed over 5 frame

transmissions. Each frame consisted of a 4-byte frame header, 16 parity bytes, and 128 bytes of

payload, for a total of 1184 bits. At 1000 bits/second, the modulated block of data takes 1184 ms

to transmit. The total frame transmission time is equal to 1184 ms plus 50 ms for the LFM chirp

signal plus another 10 ms for the guard time, for a total of 1244 ms. As can be seen in the table,

the time to encode the data with R-S codes and modulate the entire block is longest on the T500,

taking 96 ms, or 7.72% of the total frame transmission time.

Data from the sound card was read in blocks of 4096 samples, which correspond to ap-

154

proximately 85.33 ms. As stated earlier, two blocks are concatenated before performing the

cross-correlation operation. Thus, performing cross-correlation on 8192 samples appears to ex-

ecute slowest on the T60p, consuming 5.03 ms on average. This time represents 5.89% of the

duration of an incoming block of audio samples.

The demodulation procedure operates on the modulated data portion of the frame, ex-

cluding the chirp signal and guard time. The Levinson-Durbin algorithm, which is O(n
2
), oper-

ates on GUARD_MS ms of samples. In this performance evaluation, 10 ms of guard time sam-

pled at 48 kHz equates to 480 samples. The T500 was the slowest platform for this operation,

taking 5.33 ms. The profiling was repeated for a 20 ms guard time, or 960 samples, where matrix

inversion took 13.50 ms on average. For small numbers of samples, the computation time for

Levinson-Durbin matrix inversion seems quite practical, especially given that it is running though

a Java VM.

The two subroutines that consistently consume the most time on each system are convo-

lution and envelope detection. This is not surprising, as each requires computing the forward and

inverse FFT of 56,832 samples. Faster FFT implementations do exist. Since the worst-case de-

modulation time is already about 22% of the duration of the data frame with binary FSK (and

more with 4-FSK), it might be beneficial to investigate using other FFT implementations, such as

FFTW [FFTW 2010] which now includes Java wrappers.

The performance numbers here indicate that, even with Java, the modem is able to oper-

ate in real time. The demodulation time is clearly less than the transmission delay. Despite the

claims for real-time operation, the modem exhibits significant latency, given by the row

Sum(d:m) in Table 4-1. Since the entire frame is buffered before any processing occurs, there is a

feeling of sluggishness when operating the system in an environment where the processing time

masks propagation delay. This condition is less noticeable when operating at high data rates,

155

where the processing time is a small fraction of a second, and exacerbated at low data rates,

where there are many more samples per symbol to process. The demodulated frame can appear at

the application more than a full second after the last sample of the frame is received. Unfortu-

nately, there is no easy way to change this behavior; the receiver would need to be redesigned

from the bottom up.

4.9.2 Performance in AWGN Channel

The modem‟s implementation of noncoherent FSK detection is basically the same as the

envelope detector described in Section 3.3.6; therefore, its performance in the office test envi-

ronment is similar to that observed during the validation procedure for the simulator. (See Ap-

pendix C for the BERs obtained at various carrier frequencies and symbol rates.)

The best-case scenario would have been to test the Softwater Modem in the Hudson Riv-

er estuary to see how well it works in a time-variant channel. The Hudson experiment would

have tested the modem‟s implementation of frame synchronization, FSK detection, and channel

equalization. However, since funding dissipated, an alternate test had to be devised.

The alternate test was to determine how the modem performed in an AWGN channel. In

order to compare the actual performance with the theoretical limit, the BER of modem was plot-

ted for various bit-normalized SNR, or Eb/N0, values. Eb/N0 is defined as energy per bit to noise

power spectral density ratio. As Eb/N0 increases, the probability of a bit error decreases at a rate

that produces a curve having a waterfall-like shape (when the x-axis is in dB scale). The solid

lines in Figure 4-11 show the theoretical relationship between BER and Eb/N0 for noncoherent

FSK detection. Note that in this test, other factors such as fading, ISI from multipath propaga-

tion, and impulsive, possibly colored noise are not taken into consideration. Thus, computing the

actual BER versus Eb/N0 serves as a simple, controlled means of validating the receiver‟s imple-

mentation.

156

The procedure for estimating the BER versus Eb/N0 was to attach a 12” 3.5 mm cable

from the headphone output of the T60p laptop to the microphone input of the T500 and repeated-

ly transmit a series of packets at increasing output levels. Anytime the T500 was used as the

transmitter, the noise floor rose by approximately 10 dB. When using the T60p as the transmitter,

the noise floor remained relatively constant (within 2 dB). The computer‟s noise followed a nor-

mal distribution and had no peaks in the transmission band, providing an approximation of how

the modem would perform in an AWGN channel.

To estimate SNR, the PSD of both noise and the modulated signal was computed. Upon

figuring out which array elements correspond to frequencies in the modulated signal's bandwidth,

the dB level for both noise and signal in only the relevant frequency band was averaged, as in

Equation (3.2), and the difference of the averages provided the SNR value. The relationship be-

tween SNR and Eb/N0 is defined as

 (4.3)

where W is the bandwidth of the modulated signal and R is the bit rate. Since the ratio W/R is

always 2 for orthogonal noncoherent FSK signaling with minimum tone spacing, Eb/N0 turns out

to be 3 dB greater than the computed SNR.

Table 4-2: Performance test results for binary FSK.

Eb/N0 BER Bits Sent Error Bits

4.13 0.337 103,600 34,926

4.66 0.296 103,600 30,677

5.32 0.162 103,600 16,742

6.76 0.0777 103,600 8,045

8.52 0.0174 103,600 1,807

10.40 0.00717 518,000 3,715

11.51 0.00289 518,000 1,498

12.74 0.000251 518,000 130

14.27 2.220E-5 1,036,000 23

15.47 1.931E-6 1,036,000 2

157

Table 4-3: Performance test results for 4-FSK.

Eb/N0 BER Bits Sent Error Bits

 4.95 0.286 103,600 29,652

 6.16 0.169 103,600 17,492

 7.38 0.0533 103,600 5,521

 9.25 0.00829 207,200 1,718

 11.44 5.598E-4 414,400 232

 12.67 1.081E-4 1,036,000 112

 14.01 2.684E-5 1,554,000 41

 15.43 1.689E-5 2,072,000 35

 16.76 4.826E-6 2,072,000 10

Binary FSK was used at 2 kbps, with tones at 10 and 12 kHz. The relevant band covered

9-13 kHz. Inverse filtering was disabled. Data frames contained 2072 bits. The threshold for

detection was increased as SNR increased in order to prevent false frame detections. The test was

repeated with 4-FSK, again at 2 kbps and in the same frequency band, with tones at 9.5, 10.5,

11.5 and 12.5 kHz. Tables 4-2 and 4-3 list the observed BER vs. Eb/N0 for binary and 4-FSK,

respectively, while showing exactly how many bits were transmitted and how many were re-

ceived erroneously. The performance test results for both modulation techniques are similar,

though up to 2,072,000 bits were transmitted at higher signal strengths when testing 4-FSK. It is

acknowledged that the confidence intervals for the lower BERs are very wide, since obtaining

tight intervals would take on the order of days at the modem‟s slow bit rate. These estimates

hopefully still offer some insight into the expected performance of the Softwater Modem‟s im-

plementation of binary and 4-FSK compared to the theoretical limit. As seen in Figure 4-11, bi-

nary FSK closely approximates the theoretical curve while the performance of 4-FSK is a bit

lacking, especially with higher signal strengths. With 4-FSK, it is believed that the system is ap-

proaching the distortion limit of the channel, which makes it harder to distinguish closer spaced

tones than further spaced tones.

158

Figure 4-11: Empirical and theoretical BER vs. Eb/N0.

4.10 Limitations

It is well known the TCP/IP is far from ideal for underwater acoustic communication

[Akyildiz 2006]. The additional overhead of relatively large headers increases the transmission

time of a packet. More importantly, packet retransmissions and automatic acknowledgment are

problematic, even in the simplest case of point-to-point communication between two nodes. For

example, the TCP standard sets the initial round-trip time to 3 seconds. Given the slow data rates

and long propagation delays of underwater acoustic systems, 3 seconds is not enough time to es-

tablish a connection. Therefore, the client begins retransmitting SYN packets before the server‟s

SYN+ACK even reaches the client. Since the mechanism for changing the initial round trip time

(irtt) is broken in the Linux kernel, the Softwater Modem has trouble working with TCP/IP; it

almost appears as though a SYN flood attack is taking place. Thus, UDP, a simpler transport pro-

tocol that uses a smaller header and does not bother with packet retransmissions, is preferred for

demonstrating the Softwater Modem‟s capabilities.

159

4.11 Future Work

One direction for future work is to augment the repertoire of modulation and signal

processing techniques, currently limited to noncoherent binary and 4-FSK based on envelope de-

tection. While the simulator was described before the Softwater Modem in this dissertation for

greater readability, its development actually succeeded that of the modem. In fact, the modem

was really the author‟s first step into building a working PHY layer implementation. So, there are

many places for improvement, starting with the addition of the methods currently implemented in

the simulator, such as the more computationally efficient quadrature receiver for FSK detection,

hard limiter for correcting disparities between amplitudes of different tones, and correlation re-

ceiver for PSK. It would also be beneficial to develop a LMS-based adaptive DFE for PSK re-

ception.

Another logical extension is to build a feedback mechanism that can update the modem's

parameters on the fly as a function of observations of changing channel conditions. As stated

earlier, the original goal was to develop a handshaking protocol on a control channel that propa-

gates information about the modem‟s optimal configuration to other nodes in the network. After

adding more modulation and signal processing techniques, development of these adaptive, “cog-

nitive” features can commence.

Because of its LFM chirp mechanism and ability to record frames and save impulse re-

sponse estimates to file, the modem can serve to some extent as a scientific instrument. Accor-

dingly, it can be used to perform long-term SNR and impulse response capture experiments in

interesting bodies of water in order to learn more about the effects of inconstant phenomena such

as tides, weather, noise, and wakes on acoustic communication performance. Furthermore, these

impulse response estimates can be used as input for the simulator.

160

Chapter 5

Summary

5.1 Evaluation of Thesis

The work in this dissertation is based on channel estimation. The thesis states that chan-

nel estimation techniques can be employed in both a network simulator and software modem to

quantify the channel-induced distortion of acoustic signals and thereby to improve the quality of

simulation and adaptability of modulation and demodulation, respectively. This thesis has been

shown to be true.

The impulse response measurements taken in the Hudson River estuary serve as the input

to the network simulation so that BERs are no longer based on simple assumptions about the

channel. For time-invariant channels, the BER of a packet computed by the simulator matches

within a few percent of the BER of a packet that is actually transmitted through a test environ-

ment physical channel.

The software modem computes the channel‟s impulse response at the beginning of a

packet, inverts it, and convolves it with the rest of the waveform to mitigate ISI, irregularities in

the frequency response, and other signal distortions imposed by the channel. As a result, in shal-

low-water channels with properties that change relatively slowly, the modem is able to sense and

adapt to the environment and obtain data rates that would otherwise have resulted in numerous bit

errors because of multipath propagation.

5.2 Contributions

The work presented in this dissertation covers three separate but related areas of under-

water acoustic communication, namely channel characterization, network simulation, and soft-

ware defined radio. The following contributions have been made to the research community:

161

1) Characterization of the Hudson River estuary at link distances of 200 and 505 meters.

Analysis is highly detailed and includes the scattering function, multipath intensity pro-

file, spaced-frequency correlation function, Doppler power spectrum, spaced-time corre-

lation function, and fading distribution. It is clear that the Hudson is a multipath fading

channel with a short coherence time.

2) The procedure for carrying out channel characterization has been described in great de-

tail, possibly more thoroughly than in any other work. The importance of pre-experiment

analysis of sounding signal properties and the bounds of a sounding signal‟s length have

been made clear. Moreover, for each of the characterization functions, the formula has

been translated into code, making the connection between textbook descriptions and prac-

tical implementation easy to follow.

3) A network simulation written in OMNeT++ and MATLAB that simulates the underwater

acoustic channel as well as the PHY layer of a network stack. This simulation provides

more accurate BERs than previous attempts that use SNR as the only input parameter.

The software‟s modular design makes it easy to add different types of receivers for com-

parison purposes. Furthermore, the simulation technique affords the opportunity to simu-

late any body of water if the measurements are available for its input. This capability

will make it easy to compare the effects of different channels on a communication sys-

tem. Similarly, the simulation facilitates the study of choosing the best communication

technique for a particular environment.

4) A software-driven binary and 4-FSK modem with a zero-forcing equalizer and Reed-

Solomon codes. This modem offers many configurable parameters, including carrier fre-

quency, symbol rate, and guard time, that enable it to work well in a variety of environ-

162

ments. It interfaces with the Linux TUN driver to enable unmodified network applica-

tions to run over an acoustic link.

5) Software for the channel characterization, network simulation, and software modem, key

parts of which are printed in the appendix. The code will help others understand how to

translate abstract formulas and vague block diagrams found in many textbooks into work-

ing systems.

163

Appendix A

Source Code for Chapter 2

A.1 Chirp Signal Generation

function [y, time] = chirp(startFreq, endFreq, samplingRate, numSeconds, me-

thod)

%CHIRP generates an ascending chirp signal.

% Y = CHIRP(startFreq, endFreq, samplingRate, numSeconds)

% where startFreq and endFreq (endFreq > startFreq) are the starting and

% ending frequencies specified in Hz, samplingRate is the sampling rate

% in Hz of the signal to be generated, and numSeconds is the duration of

% the signal in seconds, returns a linear frequency modulated complex-

% valued chirp signal.

%

% Y = CHIRP(startFreq, endFreq, samplingRate, numSeconds, method)

% specifies alternate chirp methods.

% Available methods are 'linear' and 'hyperbolic'. The default is

% 'linear'.

%

% [Y, TIME] = CHIRP(...) returns a vector of time indices in seconds

% (TIME).

 if (nargin < 4)

 error('Too few arguments specified in function.');

 end

 if (nargin > 5)

 error('Too many arguments specified in function.');

 end

 if (nargin == 4)

 method = 'linear';

 end

 time = 1/samplingRate : 1/samplingRate : numSeconds;

 if (strcmp(method, 'linear') == 1)

 beta = (endFreq - startFreq) / numSeconds;

 y = exp(1j * (2 * pi * (0.5 * beta * time.^2 + startFreq * time)));

 elseif (strcmp(method, 'hyperbolic') == 1)

 k = (endFreq - startFreq) / (endFreq * numSeconds);

 a = -2 * pi * startFreq / k;

 y = exp(1j * (a * log(1 - k * time)));

 else

 error('Unknown chirp type %s.', method);

 return;

 end

A.2 Comparison of Autocorrelation Function of Various Sounding Signals

% Author: Brian Borowski

% Created: 01/18/2008

% Last modified: 01/27/2008

% Compares autocorrelation function of several sounding signals.

164

%% Start with a clean slate.

clc;

clear all;

close all;

%% Initialization.

carrierFreq = 12000;

% For BPSK/DSSS:

% - symbolsPerSecond must evenly divide samplingRate and carrierFreq.

% - The bandwidth of the main lobe will be (2 x symbolsPerSecond) Hz,

% centered on carrierFreq.

symbolsPerSecond = 12000;

samplingRate = 48000;

samplesPerSymbol = samplingRate/symbolsPerSecond;

load mse_ao_m511;

sequence = mse_ao_m511(1,:);

%% Generate signals.

hfmChirp = real(chirp(5000, 20000, samplingRate, 0.05, 'hyperbolic'));

lfmChirp = real(chirp(5000, 20000, samplingRate, 0.05, 'linear'));

lengthOfSequence = length(sequence);

totalSamples = samplesPerSymbol * lengthOfSequence;

t = 1:totalSamples;

carrier = cos(2.0 * pi * carrierFreq * t / samplingRate);

bpskSignal = zeros(1, totalSamples);

pos = 0;

index = 1;

for i = 1:totalSamples

 bpskSignal(i) = carrier(i) * sequence(index);

 pos = pos + 1;

 if (pos == samplesPerSymbol)

 pos = 0;

 index = index + 1;

 end

end

whiteNoise = wgn(1, 0.05 * samplingRate, 1);

% Use Zero-Pole-Gain design to filter white noise.

Wn = [5000/(samplingRate/2) 20000/(samplingRate/2)];

[z, p, k] = butter(10, Wn, 'bandpass');

[sos, g] = zp2sos(z, p, k);

Hd = dfilt.df2sos(sos, g);

filteredWhiteNoise = filter(Hd, whiteNoise);

%% Plot autocorrelation functions.

figure;

[auto, lags] = xcorr(hfmChirp, 'coeff');

time = lags / samplingRate * 1000;

plot(time, auto);

xlim([-2 2]);

ylim([-1.2 1.2]);

seconds = length(hfmChirp) / samplingRate;

if (seconds < 1)

 signalLengthStr = sprintf('%.1f ms', seconds * 1000);

else

165

 signalLengthStr = sprintf('%.1f s', seconds);

end

graphTitle = sprintf('Autocorrelation of HFM Chirp 5-20 kHz, %s', ...

 signalLengthStr);

title(graphTitle, 'FontWeight', 'bold');

xlabel('Delay (ms)');

ylabel('Correlation Coefficient');

figure;

[auto, lags] = xcorr(lfmChirp, 'coeff');

time = lags / samplingRate * 1000;

plot(time, auto);

xlim([-2 2]);

ylim([-1.2 1.2]);

seconds = length(lfmChirp) / samplingRate;

if (seconds < 1)

 signalLengthStr = sprintf('%.1f ms', seconds * 1000);

else

 signalLengthStr = sprintf('%.1f s', seconds);

end

graphTitle = sprintf('Autocorrelation of LFM Chirp 5-20 kHz, %s', ...

 signalLengthStr);

title(graphTitle, 'FontWeight', 'bold');

xlabel('Delay (ms)');

ylabel('Correlation Coefficient');

figure;

[auto, lags] = xcorr(bpskSignal, 'coeff');

time = lags / samplingRate * 1000;

plot(time, auto);

xlim([-2 2]);

ylim([-1.2 1.2]);

seconds = length(bpskSignal) / samplingRate;

if (seconds < 1)

 signalLengthStr = sprintf('%.1f ms', seconds * 1000);

else

 signalLengthStr = sprintf('%.1f s', seconds);

end

graphTitle = sprintf('Autocorrelation of DSSS/BPSK Signal, %s', ...

 signalLengthStr);

title(graphTitle, 'FontWeight', 'bold');

xlabel('Delay (ms)');

ylabel('Correlation Coefficient');

figure;

[auto, lags] = xcorr(filteredWhiteNoise, 'coeff');

time = lags / samplingRate * 1000;

plot(time, auto);

xlim([-2 2]);

ylim([-1.2 1.2]);

seconds = length(filteredWhiteNoise) / samplingRate;

if (seconds < 1)

 signalLengthStr = sprintf('%.1f ms', seconds * 1000);

else

 signalLengthStr = sprintf('%.1f s', seconds);

end

graphTitle = ...

 sprintf('Autocorrelation of Bandpass Filtered White Noise 5-20 kHz, %s', ...

 signalLengthStr);

title(graphTitle, 'FontWeight', 'bold');

166

xlabel('Delay (ms)');

ylabel('Correlation Coefficient');

figure;

[auto, lags] = xcorr(whiteNoise, 'coeff');

time = lags / samplingRate * 1000;

plot(time, auto);

xlim([-2 2]);

ylim([-1.2 1.2]);

seconds = length(whiteNoise) / samplingRate;

if (seconds < 1)

 signalLengthStr = sprintf('%.1f ms', seconds * 1000);

else

 signalLengthStr = sprintf('%.1f s', seconds);

end

graphTitle = sprintf('Autocorrelation of White Noise, %s', signalLengthStr);

title(graphTitle, 'FontWeight', 'bold');

xlabel('Delay (ms)');

ylabel('Correlation Coefficient');

%% Compute and plot PSD of each sounding signal.

h = spectrum.welch;

hfmHpsd = psd(h, hfmChirp, 'Fs', samplingRate);

lfmHpsd = psd(h, lfmChirp, 'Fs', samplingRate);

bpskHpsd = psd(h, bpskSignal, 'Fs', samplingRate);

filteredWhiteNoiseHpsd = psd(h, filteredWhiteNoise, 'Fs', samplingRate);

whiteNoiseHpsd = psd(h, whiteNoise, 'Fs', samplingRate);

maxVal1 = max(max(hfmHpsd.Data), max(lfmHpsd.Data));

maxVal2 = max(max(bpskHpsd.Data), max(whiteNoiseHpsd.Data));

maxVal = max(maxVal1, maxVal2);

figure;

hold on;

plot(hfmHpsd.Frequencies/1000, pow2db(hfmHpsd.Data / maxVal), ...

 'Color', [1 0 0]);

plot(lfmHpsd.Frequencies/1000, pow2db(lfmHpsd.Data / maxVal), '--', ...

 'Color', [0 0.5 0]);

plot(bpskHpsd.Frequencies/1000, pow2db(bpskHpsd.Data / maxVal), ':', ...

 'Color', [0 0 1], 'LineWidth', 2);

plot(filteredWhiteNoiseHpsd.Frequencies/1000, ...

 pow2db(filteredWhiteNoiseHpsd.Data / maxVal), '-.', 'Color', [1 0.5 1]);

plot(whiteNoiseHpsd.Frequencies/1000, ...

 pow2db(whiteNoiseHpsd.Data / maxVal), 'Color', [0 0 0]);

hold off;

legend('HFM Chirp, 5-20 kHz', ...

 'LFM Chirp, 5-20 kHz', ...

 'DSSS/BPSK, 12 kHz Carrier', ...

 'Bandpass Filtered White Noise, 5-20 kHz', ...

 'White Noise');

grid on;

title('Welch Power Spectral Density Estimate', 'FontWeight', 'bold');

xlim([0 samplingRate/1000/2]);

xlabel('Frequency (kHz)');

ylabel('Power/Frequency (dB/Hz)');

167

A.3 Comparison of Autocorrelation Function of White Noise Signals of Various

Lengths

% Author: Brian Borowski

% Created: 02/28/2010

% Last modified: 02/28/2010

% Compares the autocorrelation function of two white noise signals, with

% one being significantly longer than the other.

%% Start with a clean slate.

clc;

clear all;

close all;

%% Generate the white noise signals.

samplingRate = 48000;

lengthMsShort = 10;

shortSignal = rand(1, lengthMsShort * samplingRate / 1000) - 0.5;

lengthMsLong = 1000;

longSignal = rand(1, lengthMsLong * samplingRate / 1000) - 0.5;

%% Plot the autocorrelation functions.

[auto, lags] = xcorr(shortSignal, 'coeff');

time = lags / samplingRate * 1000;

figure;

plot(time, auto, 'r');

[auto, lags] = xcorr(longSignal, 'coeff');

time = lags / samplingRate * 1000;

hold on;

plot(time, auto, 'b');

xlim([-5 5]);

ylim([-1.2 1.2]);

title('Autocorrelation of White Noise', 'FontWeight', 'bold');

xlabel('Delay (ms)');

ylabel('Correlation Coefficient');

s1 = sprintf('%d ms', lengthMsShort);

s2 = sprintf('%d ms', lengthMsLong);

legend(s1, s2);

A.4 Channel Characterization

% Author: Brian Borowski

% Created: 07/23/2008

% Last modified: 02/02/2010

% Performs channel characterization.

%% Start with a clean slate.

clc;

clear all;

close all;

%% Process the recorded signal.

recorded_signal_file = 'Recordings/SoundingSignal.wav';

[recordedSignal, samplingRate] = wavread(recorded_signal_file);

totalSamples = length(recordedSignal);

recordedSeconds = totalSamples / samplingRate;

168

nyquistFreq = samplingRate / 2;

%% Process the reference signal.

referenceSeconds = 0.05;

referenceSamples = referenceSeconds * samplingRate;

chirpStartFreq = 0;

chirpEndFreq = 24000;

referenceSignal = chirp(chirpStartFreq, chirpEndFreq, ...

 samplingRate, referenceSeconds);

%% Plot the autocorrelation of the reference signal.

[auto, lags] = xcorr(referenceSignal, 'coeff');

time = lags / samplingRate * 1000;

figure;

plot(time, real(auto));

axis([-2 2 -1.2 1.2]);

s = sprintf('Autocorrelation of LFM Chirp %d-%d kHz, %.1f ms', ...

 chirpStartFreq / 1000, chirpEndFreq / 1000, ...

 referenceSeconds * 1000);

title(s, 'FontWeight', 'bold');

xlabel('Delay (ms)');

ylabel('Correlation Coefficient');

%% Plot the envelope of autocorrelation of the reference signal in dB.

figure;

plot(time, mag2db(abs(auto)));

axis([-5 5 -60 0]);

s = sprintf('Envelope of Autocorrelation of LFM Chirp %d-%d kHz, %.1f ms', ...

 chirpStartFreq / 1000, chirpEndFreq / 1000, ...

 referenceSeconds * 1000);

title(s, 'FontWeight', 'bold');

xlabel('Delay (ms)');

ylabel('Magnitude (dB)');

%% Calculate impulse response over time.

numOfImpulseResponses = min(recordedSeconds / referenceSeconds, 101);

if (numOfImpulseResponses == 101)

 recordedSeconds = 5;

end

seconds = 0.011;

len = seconds * samplingRate;

if (mod(len, 2) == 0)

 len = len + 1;

end

impulseResponse = zeros(numOfImpulseResponses, len);

for i = 1:numOfImpulseResponses

 snip = recordedSignal((i-1)*referenceSamples+1:i*referenceSamples);

 temp = fftshift(xcorr(snip, conj(referenceSignal)));

 impulseResponse(i,:) = temp(1:len);

end

[maxVal maxIndex] = max(max(abs(impulseResponse)));

impulseResponse = impulseResponse / maxVal;

%% Plot magnitude levels of main component of impulse response.

magnitude = abs(impulseResponse(:, maxIndex));

time = (0:length(magnitude) - 1) / (1 / referenceSeconds);

figure;

169

plot(time, magnitude);

title('Magnitude of Strongest Impulse Response Tap', ...

 'FontWeight', 'bold');

xlabel('Time (s)');

ylabel('Magnitude');

disp('Magnitude of Strongest Impulse Response Tap');

s = sprintf(' Max: %.4f', max(magnitude));

disp(s);

s = sprintf(' Min: %.4f', min(magnitude));

disp(s);

s = sprintf(' Mean: %.4f', mean(magnitude));

disp(s);

s = sprintf(' Std Dev: %.4f', std(magnitude));

disp(s);

%% Plot impulse response over time.

len = length(impulseResponse(1,:));

oneMs = 0.001 * samplingRate;

figure;

upperBound =

int32(numOfImpulseResponses*referenceSeconds*(1.0/referenceSeconds));

imagesc([-1 (length(impulseResponse(1,:))-oneMs)/(samplingRate/1000)], ...

 [0 length(impulseResponse(:,1))/(1.0/referenceSeconds)], ...

 abs(impulseResponse(1:upperBound, 1:len)));

set(gca, 'ydir', 'normal');

title('Impulse Response {\itc}(\tau; {\itt})', 'FontWeight', 'bold');

xlabel('[\tau] Delay (ms)');

ylabel('[t] Time (s)');

zlabel('Normalized Intensity');

colorbar;

%% Plot single impulse response.

ir = real(impulseResponse(1,:));

[maxValue mainPeakIndex] = max(ir);

earlyPeakIndex = find(ir >= 0.25 * maxValue);

offset = mainPeakIndex - earlyPeakIndex;

ir = ir(earlyPeakIndex:end);

ir = ir / max(abs(ir));

figure;

n = (1:length(ir)) * 1000 / samplingRate;

plot(n, ir);

axis([0 10 -1 1]);

title('Impulse Response of Tub', 'FontWeight', 'bold');

xlabel('[\tau] Delay (ms)');

ylabel('Normalized Amplitude');

%% Plot frequency and phase response.

[h w] = freqz(ir, 1);

f = w / (2 * pi) * samplingRate / 1000;

magnitude = abs(h);

stdDev = mag2db(std(magnitude));

decibel = mag2db(magnitude);

len = length(magnitude);

avgDecibel = 10 * log10(sum(10.^(decibel/10))/len);

decibel = decibel - avgDecibel;

disp('Frequency Response');

170

s = sprintf(' Max: %.4f dB', max(decibel));

disp(s);

s = sprintf(' Min: %.4f dB', min(decibel));

disp(s);

s = sprintf(' Mean: %.4f dB', 10 * log10(sum(10.^(decibel/10))/len));

disp(s);

s = sprintf(' Std Dev: %.4f dB', stdDev);

disp(s);

figure;

subplot(2, 1, 1),

plot(f, decibel),

axis([0 f(end) -40 20]),

title('Frequency Response', 'FontWeight', 'bold'),

xlabel('Frequency (kHz)'),

ylabel('Magnitude (dB)');

phase = angle(h) * 180 / pi;

subplot(2, 1, 2),

plot(f, phase),

xlim([0 f(end)]),

title('Phase Response', 'FontWeight', 'bold'),

xlabel('Frequency (kHz)'),

ylabel('Phase (degrees)');

%% Plot a single cross-section of the scattering function, at the

 % time delay with the greatest magnitude.

 % Do not attempt to reduce side lobes with windowing or by zeroing out

 % values.

crossSection = fftshift(fft(xcorr(impulseResponse(:,maxIndex))));

maxVal = max(crossSection);

crossSection = crossSection / maxVal;

lambdaSamples = length(crossSection);

lowerBound = floor(lambdaSamples / 2);

upperBound = floor(lambdaSamples / 2);

if (mod(lambdaSamples, 2) == 0)

 upperBound = upperBound - 1;

end

f = -lowerBound:upperBound;

lambda = (1 / referenceSeconds / 2) * f / lowerBound;

figure;

plot(lambda, abs(crossSection));

title('Doppler Power Spectrum', 'FontWeight', 'bold');

xlabel('[\lambda] Frequency (Hz)');

ylabel('Normalized Intensity');

figure;

plot(lambda, pow2db(abs(crossSection)));

title('Doppler Power Spectrum', 'FontWeight', 'bold');

xlabel('[\lambda] Frequency (Hz)');

ylabel('Normalized Intensity (dB)');

%% Compute scattering function.

tauSamples = length(impulseResponse);

lambdaSamples = numOfImpulseResponses;

clear temp;

scatteringFunction = zeros(tauSamples, 2 * lambdaSamples - 1);

for i = 1:tauSamples

171

 temp = fftshift(fft(xcorr(impulseResponse(:,i))));

 scatteringFunction(i,:) = temp(end:-1:1);

end

maxVal = max(max(abs(scatteringFunction)));

scatteringFunction = scatteringFunction / maxVal;

scatteringFunction(scatteringFunction < 0.01) = 0;

%% Plot scattering function.

[tauSamples lambdaSamples] = size(scatteringFunction(1:end,:));

tau = (0:tauSamples-1) / samplingRate * 1000 - 1;

lowerBound = floor(lambdaSamples / 2);

upperBound = floor(lambdaSamples / 2);

if (mod(lambdaSamples, 2) == 0)

 upperBound = upperBound - 1;

end

f = -lowerBound:upperBound;

lambda = (1 / referenceSeconds / 2) * f / lowerBound;

figure;

[X, Y] = meshgrid(tau, lambda);

contour(X, Y, (abs(scatteringFunction(1:end,:)))');

title('Scattering Function', 'FontWeight', 'bold'),

xlabel('[\tau] Delay (ms)'),

ylabel('[\lambda] Frequency (Hz)'),

zlabel('Normalized Intensity'),

axis([-1 5 -2 2]);

colorbar;

%% Plot multipath intensity profile and compute delay spreads.

mip = sum(abs(scatteringFunction'));

mip = mip / max(mip);

len = length(mip);

tau = (0:len-1) * 1000/samplingRate - 1;

figure;

plot(tau, mip);

xlim([-1 10]);

title('Multipath Intensity Profile', 'FontWeight', 'bold');

xlabel('[\tau] Delay (ms)');

ylabel('Normalized Intensity');

maximumExcessDelay20 = find(mip >= 0.01); % 20 dB

positiveMIP = mip(maximumExcessDelay20(1):maximumExcessDelay20(end));

positiveTau = tau(maximumExcessDelay20(1):maximumExcessDelay20(end));

sumValue = sum(positiveMIP);

meanDelay = sum(positiveTau .* positiveMIP) / sumValue;

rmsDelaySpread = sqrt(...

 sum((positiveTau - meanDelay).^2 .* positiveMIP) / sumValue);

disp('Delay Spread');

s = sprintf(' Mean excess delay: %.4f ms', meanDelay);

disp(s);

s = sprintf(' RMS delay spread: %.4f ms', rmsDelaySpread);

disp(s);

maximumExcessDelay10 = find(mip >= 0.1); % 10 dB

maximumExcessDelayMs = (maximumExcessDelay10(end) - ...

 maximumExcessDelay10(1)) / samplingRate * 1000;

s = sprintf(' Maximum excess delay: %.4f ms', maximumExcessDelayMs);

disp(s);

172

%% Plot spaced-frequency correlation function.

sfcf = abs(fftshift(fft(mip)));

sfcf = sfcf / max(sfcf);

lenlambda = length(sfcf);

lowerBound = floor(lenlambda / 2);

upperBound = floor(lenlambda / 2);

if (mod(lenlambda, 2) == 0)

 upperBound = upperBound - 1;

end

f = -lowerBound:upperBound;

freq = nyquistFreq / 2 * f / lowerBound / 1000;

figure;

plot(freq, sfcf);

title('Spaced-Frequency Correlation Function', 'FontWeight', 'bold');

xlabel('\Delta f (kHz)');

ylabel('|{\itR_C}(\Delta f)|');

xlim([freq(1) freq(end)]);

%% Convert spaced-frequency correlation function to dB and calculate the

% -3, -6 and -10 dB coherence bandwidths.

sfcf = pow2db(sfcf);

sfcf = sfcf - max(sfcf);

figure;

plot(freq, sfcf);

title('Spaced-Frequency Correlation Function', 'FontWeight', 'bold');

xlabel('\Delta f (kHz)');

ylabel('|{\itR_C}(\Delta f)| (dB)');

xlim([freq(1) freq(end)]);

midpoint = floor(length(sfcf)/2);

resultLeft = find(sfcf(1:midpoint) < -3);

resultRight = find(sfcf(midpoint+1:end) < -3);

if (not(isempty(resultLeft)) && not(isempty(resultRight)))

 minusLeft = (resultLeft(end)+1)/lenlambda * nyquistFreq;

 minusRight = (resultRight(1)+midpoint-1)/lenlambda * nyquistFreq;

 coherenceBandwidth3 = round(minusRight - minusLeft);

else

 coherenceBandwidth3 = nyquistFreq;

end

resultLeft = find(sfcf(1:midpoint) < -6);

resultRight = find(sfcf(midpoint+1:end) < -6);

if (not(isempty(resultLeft)) && not(isempty(resultRight)))

 minusLeft = (resultLeft(end)+1)/lenlambda * nyquistFreq;

 minusRight = (resultRight(1)+midpoint-1)/lenlambda * nyquistFreq;

 coherenceBandwidth6 = round(minusRight - minusLeft);

else

 coherenceBandwidth6 = nyquistFreq;

end

resultLeft = find(sfcf(1:midpoint) < -10);

resultRight = find(sfcf(midpoint+1:end) < -10);

if (not(isempty(resultLeft)) && not(isempty(resultRight)))

 minusLeft = (resultLeft(end)+1)/lenlambda * nyquistFreq;

 minusRight = (resultRight(1)+midpoint-1)/lenlambda * nyquistFreq;

 coherenceBandwidth10 = round(minusRight - minusLeft);

else

173

 coherenceBandwidth10 = nyquistFreq;

end

disp('Coherence Bandwidth');

s = sprintf(' -3 dB: %d Hz', coherenceBandwidth3);

disp(s);

s = sprintf(' -6 dB: %d Hz', coherenceBandwidth6);

disp(s);

s = sprintf(' -10 dB: %d Hz', coherenceBandwidth10);

disp(s);

%% Compute Doppler shift and spread.

dps = sum(abs(scatteringFunction));

numPoints = length(dps);

lowerBound = floor(numPoints / 2);

upperBound = lowerBound;

if (mod(lambdaSamples, 2) == 0)

 upperBound = upperBound - 1;

end

f = -lowerBound:upperBound;

lambda = (1 / referenceSeconds / 2) * f / lowerBound;

sumValue = sum(dps);

overallShift = sum(lambda .* dps) / sumValue;

overallSpread = sqrt(sum((lambda - overallShift).^2 .* dps) / sumValue);

disp('Doppler Power Spectrum');

s = sprintf(' Doppler Shift: %.4f Hz', overallShift);

disp(s);

s = sprintf(' Doppler Spread: %.4f Hz', overallSpread);

disp(s);

%% Plot Doppler power spectrum.

dps = dps / max(dps);

figure;

plot(lambda, dps);

title('Doppler Power Spectrum', 'FontWeight', 'bold');

xlabel('[\lambda] Frequency (Hz)');

ylabel('Normalized Intensity');

%% Plot spaced-time correlation function and calculate coherence times for

 % correlations of 0.5, 0.25, and 0.1.

stcf = abs(fftshift(fft(dps)));

stcf = stcf / max(stcf);

lentime = length(stcf);

lowerBound = floor(lentime / 2);

upperBound = floor(lentime / 2);

if (mod(lentime, 2) == 0)

 upperBound = upperBound - 1;

end

t = -lowerBound:upperBound;

time = recordedSeconds / 2 * t / lowerBound;

midpoint = floor(length(stcf)/2);

resultLeft = find(stcf(1:midpoint) < 0.5);

resultRight = find(stcf(midpoint+1:end) < 0.5);

if (not(isempty(resultLeft)) && not(isempty(resultRight)))

174

 minusLeft = (resultLeft(end)+1)/lentime * recordedSeconds;

 minusRight = (resultRight(1)+midpoint-1)/lentime * recordedSeconds;

 coherenceTime3 = minusRight - minusLeft;

else

 coherenceTime3 = recordedSeconds;

end

resultLeft = find(stcf(1:midpoint) < 0.25);

resultRight = find(stcf(midpoint+1:end) < 0.25);

if (not(isempty(resultLeft)) && not(isempty(resultRight)))

 minusLeft = (resultLeft(end)+1)/lentime * recordedSeconds;

 minusRight = (resultRight(1)+midpoint-1)/lentime * recordedSeconds;

 coherenceTime6 = minusRight - minusLeft;

else

 coherenceTime6 = recordedSeconds;

end

resultLeft = find(stcf(1:midpoint) < 0.1);

resultRight = find(stcf(midpoint+1:end) < 0.1);

if (not(isempty(resultLeft)) && not(isempty(resultRight)))

 minusLeft = (resultLeft(end)+1)/lentime * recordedSeconds;

 minusRight = (resultRight(1)+midpoint-1)/lentime * recordedSeconds;

 coherenceTime10 = minusRight - minusLeft;

else

 coherenceTime10 = recordedSeconds;

end

disp('Coherence Time');

s = sprintf(' -3 dB: %.3f sec', coherenceTime3);

disp(s);

s = sprintf(' -6 dB: %.3f sec', coherenceTime6);

disp(s);

s = sprintf(' -10 dB: %.3f sec', coherenceTime10);

disp(s);

figure;

plot(time, stcf);

title('Spaced-Time Correlation Function', 'FontWeight', 'bold');

xlabel('\Delta t (Seconds)');

ylabel('|{\itR_C}(\Delta t)|');

if (coherenceTime3 == recordedSeconds)

 ylim([0 1.1]);

else

 ylim([0 1]);

end

%% Estimate Doppler shift and spread for strongest components.

startIndex = maximumExcessDelay10(1);

totalPaths = length(maximumExcessDelay10);

scatteringFunction = abs(scatteringFunction(1:end,:));

index = zeros(1, totalPaths);

delayMs = zeros(1, totalPaths);

intensity = zeros(1, totalPaths);

shift = zeros(1, totalPaths);

spread = zeros(1, totalPaths);

avgShift = 0;

avgSpread = 0;

% Compute statistics on the components falling within the maximum excess

% delay (-10 dB of the strongest arrival).

175

for i = 1:totalPaths

 rowIndex = maximumExcessDelay10(i);

 intensity(i) = mip(rowIndex);

 index(i) = rowIndex;

 delayMs(i) = (rowIndex - oneMs - 1) / samplingRate * 1000;

 Sband = scatteringFunction(rowIndex,:);

 sumValue = sum(Sband);

 if (sumValue == 0)

 shift(i) = 0;

 spread(i) = 0;

 else

 shift(i) = sum(lambda .* Sband) / sumValue;

 spread(i) = sqrt(sum((lambda - shift(i)).^2 .* Sband) / sumValue);

 avgShift = avgShift + shift(i);

 avgSpread = avgSpread + spread(i);

 end

 scatteringFunction(rowIndex,:) = 0;

end

[s,c] = sort(index, 2, 'ascend');

set = [s', delayMs(c)' intensity(c)' shift(c)' spread(c)'];

s = sprintf('\nStatistics for %d Strongest Components:', totalPaths);

disp(s);

s = sprintf('Index\tDelay(ms)\tIntensity\tShift\t\tSpread');

disp(s);

for i = 1:totalPaths

 s = sprintf('%d\t\t%.3f\t\t%.4f\t\t%.4f\t\t%.4f', ...

 set(i, 1), set(i, 2), set(i, 3), set(i, 4), set(i, 5));

 disp(s);

end

s = sprintf('Average Doppler shift: %.4f Hz', avgShift/totalPaths);

disp(s);

s = sprintf('Average Doppler spread: %.4f Hz', avgSpread/totalPaths);

disp(s);

A.5 Noise Power Spectral Density

% Author: Brian Borowski

% Created: 08/03/2009

% Last modified: 02/02/2010

% Computes and plots the PSD of noise in the Hudson River estuary.

%% Start with a clean slate.

clear all;

close all;

clc;

%% Read in the data.

[signal505, samplingRate505] = wavread('Noise505m.wav');

[signal200, samplingRate200] = wavread('Noise200m.wav');

%% Compute PSDs.

h = spectrum.welch('Hann', 256);

Hpsd505 = psd(h, signal505, 'NFFT', 256, 'Fs', samplingRate505);

Hpsd200 = psd(h, signal200, 'NFFT', 256, 'Fs', samplingRate200);

pow505 = pow2db(Hpsd505.Data);

pow200 = pow2db(Hpsd200.Data);

176

%% Align to 0 dB level.

if (mean(pow505) > mean(pow200))

 maxVal = max(pow505);

else

 maxVal = max(pow200);

end

pow505 = pow505 - maxVal;

pow200 = pow200 - maxVal;

%% Plot PSDs.

plot(Hpsd505.Frequencies/1000, pow505, 'b');

hold on;

plot(Hpsd200.Frequencies/1000, pow200, 'r--');

hold off;

grid on;

title('Welch Power Spectral Density Estimate', 'FontWeight', 'bold');

xlabel('Frequency (kHz)');

ylabel('Power/Frequency (dB/Hz)');

legend('5:24 P.M.', '6:42 P.M.');

A.6 Distribution Fitting of Magnitude Levels in Multipath Arrival

% Author: Brian Borowski

% Created: 02/07/2010

% Last modified: 02/18/2010

% Fits magnitude levels to various distributions used to model fading

% channels.

%% Start with a clean slate.

clc;

clear all;

close all;

%% Read in and prepare the data.

magnitudes = csvread('StrongestComponent1.csv');

sortedMagnitudes = sort(magnitudes);

% Beta distribution cannot accept values of 1. Normalize max to 0.99 first.

sortedMagnitudes = sortedMagnitudes / sortedMagnitudes(end) * 0.99;

% Plot the fading envelope.

figure;

seconds = 1:length(magnitudes);

seconds = seconds / 20;

env = mag2db(magnitudes);

env = env - mean(env);

plot(seconds, env);

xlabel('Time (s)');

ylabel('Amplitude (dB)');

title('Fading Envelope of Strongest Impulse Response Tap', ...

 'FontWeight', 'bold');

axis([0 30 -80 20]);

%% Plot the histogram of the measurements.

figure;

177

start = (sortedMagnitudes(1));

finish = (sortedMagnitudes(end));

x = linspace(start, finish, 100);

hist(sortedMagnitudes, x);

xlabel('Signal Level');

ylabel('Frequency');

h = get(gca, 'child');

set(h, 'FaceColor', [.98 .98 .98], 'EdgeColor', [.94 .94 .94]);

counts = hist(sortedMagnitudes, x);

hold on;

plot(x, counts, 'o');

hold off;

n = length(sortedMagnitudes);

binWidth = x(2) - x(1);

prob = counts / (n * binWidth);

prob = prob / sum(prob);

legh_ = zeros(1, 7); legt_ = cell(1, 7); % Handles and text for legend

ax_ = newplot;

set(ax_, 'Box', 'on');

bar(x, prob, 'hist');

h_ = get(gca, 'child');

set(h_, 'FaceColor', [.4 .4 .4], 'EdgeColor', [.4 .4 .4]);

xlabel('Signal Level');

ylabel('Distribution');

title('Probability Distribution Function, Strongest IR Tap', ...

 'FontWeight', 'bold');

legh_(1) = h_;

legt_{1} = 'Measurements';

leginfo_ = {'Orientation', 'vertical', 'Location', 'NorthEast'};

% Use maximum likelihood estimation to fit the data.

alpha = 0.05; % alpha = 0.05 for 95% confidence.

paramEstsRayleigh = raylfit(sortedMagnitudes, alpha);

rayleighEst = raylpdf(x, paramEstsRayleigh(1));

paramEstsRician = mle(sortedMagnitudes, 'dist', 'rician', 'alpha', alpha);

ricianEst = pdf('rician', x, paramEstsRician(1), paramEstsRician(2));

K = paramEstsRician(1)^2 / (2 * paramEstsRician(2)^2);

paramEstsNakagami = mle(sortedMagnitudes, 'dist', 'nakagami', ...

 'alpha', alpha);

nakagamiEst = ...

 pdf('nakagami', x, paramEstsNakagami(1), paramEstsNakagami(2));

paramEstsBeta = betafit(sortedMagnitudes, alpha);

betaEst = betapdf(x, paramEstsBeta(1), paramEstsBeta(2));

paramEstsGamma = gamfit(sortedMagnitudes, alpha);

gammaEst = gampdf(x, paramEstsGamma(1), paramEstsGamma(2));

paramEstsLog = lognfit(sortedMagnitudes, alpha);

logEst = lognpdf(x, paramEstsLog(1), paramEstsLog(2));

rayleighEst = rayleighEst / sum(rayleighEst);

ricianEst = ricianEst / sum(ricianEst);

nakagamiEst = nakagamiEst / sum(nakagamiEst);

betaEst = betaEst / sum(betaEst);

gammaEst = gammaEst / sum(gammaEst);

logEst = logEst / sum(logEst);

178

rayleighEst = rayleighEst / sum(rayleighEst);

ricianEst = ricianEst / sum(ricianEst);

nakagamiEst = nakagamiEst / sum(nakagamiEst);

betaEst = betaEst / sum(betaEst);

gammaEst = gammaEst / sum(gammaEst);

logEst = logEst / sum(logEst);

%% Plot the fits.

hold on;

h_ = plot(x, rayleighEst, 'Color', 'red', ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

legh_(2) = h_;

legt_{2} = 'Rayleigh fit';

h_ = plot(x, ricianEst, 'Color', 'blue', ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

legh_(3) = h_;

legt_{3} = 'Rician fit';

h_ = plot(x, nakagamiEst, 'Color', 'green', ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

legh_(4) = h_;

legt_{4} = 'Nakagami fit';

h_ = plot(x, betaEst, 'Color', [1 0.64 0], ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

legh_(5) = h_;

legt_{5} = 'Beta fit';

h_ = plot(x, gammaEst, 'Color', 'magenta', ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

legh_(6) = h_;

legt_{6} = 'Gamma fit';

h_ = plot(x, logEst, 'Color', 'cyan', ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

legh_(7) = h_;

legt_{7} = 'Lognormal fit';

h_ = legend(ax_, legh_, legt_, leginfo_{:});

set(h_, 'Interpreter', 'none');

hold off;

logTwoData = log2(prob);

for i = 1:length(logTwoData)

 if (isinf(log2(logTwoData(i))))

 logTwoData(i) = 0;

 end

end

%% Test the goodness of the fits with:

% - Kullback-Leibler divergence

% - Bhattacharyya distance

179

% - Metric based on the Bhattacharyya coefficient, proposed by Comaniciu,

% Ramesh, and Meer

KLray = sum(prob .* (logTwoData - log2(rayleighEst)));

KLric = sum(prob .* (logTwoData - log2(ricianEst)));

KLnak = sum(prob .* (logTwoData - log2(nakagamiEst)));

KLbet = sum(prob .* (logTwoData - log2(betaEst)));

KLgam = sum(prob .* (logTwoData - log2(gammaEst)));

KLlog = sum(prob .* (logTwoData - log2(logEst)));

Bray = -log2(sum(sqrt(prob .* rayleighEst)));

Bric = -log2(sum(sqrt(prob .* ricianEst)));

Bnak = -log2(sum(sqrt(prob .* nakagamiEst)));

Bbet = -log2(sum(sqrt(prob .* betaEst)));

Bgam = -log2(sum(sqrt(prob .* gammaEst)));

Blog = -log2(sum(sqrt(prob .* logEst)));

BModray = sqrt(1 - (sum(sqrt(prob .* rayleighEst))));

BModric = sqrt(1 - (sum(sqrt(prob .* ricianEst))));

BModnak = sqrt(1 - (sum(sqrt(prob .* nakagamiEst))));

BModbet = sqrt(1 - (sum(sqrt(prob .* betaEst))));

BModgam = sqrt(1 - (sum(sqrt(prob .* gammaEst))));

BModlog = sqrt(1 - (sum(sqrt(prob .* logEst))));

%% Display the results in a table.

disp('----- Strongest Impulse Response Tap -----');

disp(' K-L Bhat. CRM');

s = sprintf('Beta : %.4f %.4f %.4f [alpha = %.4f, beta = %.4f]', ...

 KLbet, Bbet, BModbet, paramEstsBeta(1), paramEstsBeta(2));

disp(s);

s = sprintf('Gamma : %.4f %.4f %.4f [alpha = %.4f, beta = %.4f]', ...

 KLgam, Bgam, BModgam, paramEstsGamma(1), paramEstsGamma(2));

disp(s);

s = sprintf('Lognormal : %.4f %.4f %.4f [mu = %.4f, sigma = %.4f]', ...

 KLlog, Blog, BModlog, paramEstsLog(1), paramEstsLog(2));

disp(s);

s = sprintf('Nakagami-m: %.4f %.4f %.4f [m = %.4f, omega = %.4f]', ...

 KLnak, Bnak, BModnak, paramEstsNakagami(1), paramEstsNakagami(2));

disp(s);

s = sprintf('Rayleigh : %.4f %.4f %.4f [sigma = %.4f]', KLray, Bray, ...

 BModray, paramEstsRayleigh(1));

disp(s);

s = sprintf(...

 'Rician : %.4f %.4f %.4f [s = %.4f, sigma = %.4f, K = %.4f]', ...

 KLric, Bric, BModric, paramEstsRician(1), paramEstsRician(2), K);

disp(s);

A.7 Distribution Fitting of Magnitude Levels in Comb Signal

% Author: Brian Borowski

% Created: 07/12/2009

% Last modified: 02/18/2010

% Fits magnitude levels of comb signal to various distributions used to

% model fading channels.

%% Start with a clean slate.

clc;

clear all;

close all;

180

%% Initialization.

delta = 1.0; % Specified in kHz

tones = [35 45 60 75 85]; % Specified in kHz

secondsToProcess = 10;

[data, samplingRate, numBits] = wavread('MultipleTones.wav');

data = data(1:secondsToProcess*samplingRate);

dbEnvelope = zeros(length(tones), length(data));

%% Process each tone separately.

for i = 1:length(tones)

 tone = tones(i);

 n = 10;

 Wn = [(tone-delta)*1000 (tone+delta)*1000] / (samplingRate / 2);

 ftype = 'bandpass';

 % To avoid round-off errors, do not use the transfer function. Instead

 % get the zpk representation and convert it to second-order sections.

 % Zero-Pole-Gain design

 [z, p, k] = butter(n, Wn, ftype);

 [sos, g] = zp2sos(z, p, k);

 Hd = dfilt.df2sos(sos, g);

 filteredData = filter(Hd, data);

 filename = sprintf('%dkHz.wav', tone);

 filteredData = filteredData / max(filteredData) * 0.99;

 wavwrite(filteredData, samplingRate, filename);

 X = hilbert(filteredData);

 Xr = real(X);

 Xi = imag(X);

 magnitudes = sqrt(Xr.^2 + Xi.^2);

 sortedMagnitudes = sort(magnitudes);

 % Beta distribution cannot accept values >= 1. Normalize max to

 % 0.99 first.

 maxVal = sortedMagnitudes(end);

 sortedMagnitudes = sortedMagnitudes / maxVal * 0.99;

 minVal = sortedMagnitudes(1);

 % Beta distribution cannot accept values <= 0. All values are already

 % non-negative. Duplicate first non-negative value in place of 0.

 if (minVal == 0)

 sortedMagnitudes(1) = sortedMagnitudes(2);

 end

 dbEnvelope(i,:) = mag2db(sortedMagnitudes);

 figure;

 seconds = 1:length(magnitudes);

 seconds = seconds / samplingRate;

 env = mag2db(magnitudes);

 env = env - mean(env);

 plot(seconds, env);

 xlabel('Time (s)');

 ylabel('Amplitude (dB)');

 graphTitle = sprintf('Fading Envelope of %d kHz Sinusoid', tone);

 title(graphTitle, 'FontWeight', 'bold');

181

 ylim([-80 20]);

 meanVal = mean(dbEnvelope(i,:));

 if (meanVal < 0)

 meanVal = meanVal * -1;

 end

 dbEnvelope(i,:) = dbEnvelope(i,:) + meanVal;

 % Plot the histogram of the measurements.

 figure;

 start = (sortedMagnitudes(1));

 finish = (sortedMagnitudes(end));

 x = linspace(start, finish, 100);

 hist(sortedMagnitudes, x);

 xlabel('Signal Level');

 ylabel('Frequency');

 h = get(gca,'child');

 set(h, 'FaceColor', [.98 .98 .98], 'EdgeColor', [.94 .94 .94]);

 counts = hist(sortedMagnitudes, x);

 hold on;

 plot(x, counts, 'o');

 hold off;

 n = length(sortedMagnitudes);

 binWidth = x(2) - x(1);

 prob = counts / (n * binWidth);

 prob = prob / sum(prob);

 legh_ = zeros(1, 7); legt_ = cell(1, 7); % Handles and text for legend

 ax_ = newplot;

 set(ax_, 'Box', 'on');

 bar(x, prob, 'hist');

 h_ = get(gca, 'child');

 set(h_, 'FaceColor', [.4 .4 .4], 'EdgeColor',[.4 .4 .4]);

 xlabel('Signal Level');

 ylabel('Distribution');

 s = sprintf('Probability Distribution Function, %d kHz', tone);

 title(s, 'FontWeight', 'bold');

 legh_(1) = h_;

 legt_{1} = 'Measurements';

 leginfo_ = {'Orientation', 'vertical', 'Location', 'NorthEast'};

 % Use maximum likelihood estimation to fit the data.

 alpha = 0.05; % alpha = 0.05 for 95% confidence.

 paramEstsRayleigh = raylfit(sortedMagnitudes, alpha);

 rayleighEst = raylpdf(x, paramEstsRayleigh(1));

 paramEstsRician = mle(sortedMagnitudes, 'dist', 'rician', 'alpha', alpha);

 ricianEst = pdf('rician', x, paramEstsRician(1), paramEstsRician(2));

 K = paramEstsRician(1)^2 / (2 * paramEstsRician(2)^2);

 paramEstsNakagami = mle(sortedMagnitudes, 'dist', 'nakagami', ...

 'alpha', alpha);

 nakagamiEst = ...

 pdf('nakagami', x, paramEstsNakagami(1), paramEstsNakagami(2));

 paramEstsBeta = betafit(sortedMagnitudes, alpha);

 betaEst = betapdf(x, paramEstsBeta(1), paramEstsBeta(2));

 paramEstsGamma = gamfit(sortedMagnitudes, alpha);

 gammaEst = gampdf(x, paramEstsGamma(1), paramEstsGamma(2));

182

 paramEstsLog = lognfit(sortedMagnitudes, alpha);

 logEst = lognpdf(x, paramEstsLog(1), paramEstsLog(2));

 rayleighEst = rayleighEst / sum(rayleighEst);

 ricianEst = ricianEst / sum(ricianEst);

 nakagamiEst = nakagamiEst / sum(nakagamiEst);

 betaEst = betaEst / sum(betaEst);

 gammaEst = gammaEst / sum(gammaEst);

 logEst = logEst / sum(logEst);

 % Plot the fits.

 hold on;

 h_ = plot(x, rayleighEst, 'Color', 'red', ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

 legh_(2) = h_;

 legt_{2} = 'Rayleigh fit';

 h_ = plot(x, ricianEst, 'Color', 'blue', ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

 legh_(3) = h_;

 legt_{3} = 'Rician fit';

 h_ = plot(x, nakagamiEst, 'Color', 'green', ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

 legh_(4) = h_;

 legt_{4} = 'Nakagami fit';

 h_ = plot(x, betaEst, 'Color', [1 0.64 0], ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

 legh_(5) = h_;

 legt_{5} = 'Beta fit';

 h_ = plot(x, gammaEst, 'Color', 'magenta', ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

 legh_(6) = h_;

 legt_{6} = 'Gamma fit';

 h_ = plot(x, logEst, 'Color', 'cyan', ...

 'LineStyle', '-', 'LineWidth', 2, ...

 'Marker', 'none', 'MarkerSize', 6);

 legh_(7) = h_;

 legt_{7} = 'Lognormal fit';

 h_ = legend(ax_, legh_, legt_, leginfo_{:});

 set(h_, 'Interpreter', 'none');

 hold off;

 xlim([-0.005 1]);

 % Test the goodness of the fits with:

 % - Kullback-Leibler divergence

 % - Bhattacharyya distance

 % - Metric based on the Bhattacharyya coefficient, proposed by Comaniciu,

 % Ramesh, and Meer

 logTwoData = log2(prob);

183

 for j = 1:length(logTwoData)

 if (isinf(log2(logTwoData(j))))

 logTwoData(j) = 0;

 end

 end

 KLray = sum(prob .* (logTwoData - log2(rayleighEst)));

 KLric = sum(prob .* (logTwoData - log2(ricianEst)));

 KLnak = sum(prob .* (logTwoData - log2(nakagamiEst)));

 KLbet = sum(prob .* (logTwoData - log2(betaEst)));

 KLgam = sum(prob .* (logTwoData - log2(gammaEst)));

 KLlog = sum(prob .* (logTwoData - log2(logEst)));

 Bray = -log2(sum(sqrt(prob .* rayleighEst)));

 Bric = -log2(sum(sqrt(prob .* ricianEst)));

 Bnak = -log2(sum(sqrt(prob .* nakagamiEst)));

 Bbet = -log2(sum(sqrt(prob .* betaEst)));

 Bgam = -log2(sum(sqrt(prob .* gammaEst)));

 Blog = -log2(sum(sqrt(prob .* logEst)));

 BModray = sqrt(1 - (sum(sqrt(prob .* rayleighEst))));

 BModric = sqrt(1 - (sum(sqrt(prob .* ricianEst))));

 BModnak = sqrt(1 - (sum(sqrt(prob .* nakagamiEst))));

 BModbet = sqrt(1 - (sum(sqrt(prob .* betaEst))));

 BModgam = sqrt(1 - (sum(sqrt(prob .* gammaEst))));

 BModlog = sqrt(1 - (sum(sqrt(prob .* logEst))));

 % Display the results in a table.

 s = sprintf('----- %d kHz Sinusoid -----', tone);

 disp(s);

 disp(' K-L Bhat. CRM');

 s = sprintf('Beta : %.4f %.4f %.4f [alpha = %.4f, beta = %.4f]', ...

 KLbet, Bbet, BModbet, paramEstsBeta(1), paramEstsBeta(2));

 disp(s);

 s = sprintf('Gamma : %.4f %.4f %.4f [alpha = %.4f, beta = %.4f]', ...

 KLgam, Bgam, BModgam, paramEstsGamma(1), paramEstsGamma(2));

 disp(s);

 s = sprintf('Lognormal : %.4f %.4f %.4f [mu = %.4f, sigma = %.4f]', ...

 KLlog, Blog, BModlog, paramEstsLog(1), paramEstsLog(2));

 disp(s);

 s = sprintf('Nakagami-m: %.4f %.4f %.4f [m = %.4f, omega = %.4f]', ...

 KLnak, Bnak, BModnak, paramEstsNakagami(1), paramEstsNakagami(2));

 disp(s);

 s = sprintf('Rayleigh : %.4f %.4f %.4f [sigma = %.4f]', KLray, Bray, ...

 BModray, paramEstsRayleigh(1));

 disp(s);

 s = sprintf(...

 'Rician : %.4f %.4f %.4f [s = %.4f, sigma = %.4f, K = %.4f]', ...

 KLric, Bric, BModric, paramEstsRician(1), paramEstsRician(2), K);

 disp(s);

end

u = unique(dbEnvelope(1,:));

assert(length(u) == length(dbEnvelope(1,:)), ...

 'Duplicates found in envelope 1.');

u = unique(dbEnvelope(2,:));

assert(length(u) == length(dbEnvelope(2,:)), ...

 'Duplicates found in envelope 2.');

184

u = unique(dbEnvelope(3,:));

assert(length(u) == length(dbEnvelope(3,:)), ...

 'Duplicates found in envelope 3.');

u = unique(dbEnvelope(4,:));

assert(length(u) == length(dbEnvelope(4,:)), ...

 'Duplicates found in envelope 4.');

u = unique(dbEnvelope(5,:));

assert(length(u) == length(dbEnvelope(5,:)), ...

 'Duplicates found in envelope 5.');

zeroIndex1 = find(dbEnvelope(1,:) >= 0);

prob1 = 1:zeroIndex1 - 1;

prob1 = prob1 / length(magnitudes);

zeroIndex2 = find(dbEnvelope(2,:) >= 0);

prob2 = 1:zeroIndex2 - 1;

prob2 = prob2 / length(magnitudes);

zeroIndex3 = find(dbEnvelope(3,:) >= 0);

prob3 = 1:zeroIndex3 - 1;

prob3 = prob3 / length(magnitudes);

zeroIndex4 = find(dbEnvelope(4,:) >= 0);

prob4 = 1:zeroIndex4 - 1;

prob4 = prob4 / length(magnitudes);

zeroIndex5 = find(dbEnvelope(5,:) >= 0);

prob5 = 1:zeroIndex5 - 1;

prob5 = prob5 / length(magnitudes);

figure;

semilogy(dbEnvelope(1, 1:zeroIndex1 - 1), prob1, ...

 dbEnvelope(2, 1:zeroIndex2 - 1), prob2, ...

 dbEnvelope(3, 1:zeroIndex3 - 1), prob3, ...

 dbEnvelope(4, 1:zeroIndex4 - 1), prob4, ...

 dbEnvelope(5, 1:zeroIndex5 - 1), prob5);

grid minor;

grid;

grid minor;

title('Cumulative Distribution of Sinusoids', 'FontWeight', 'bold');

ylabel('Probability Signal Level < Abscissa');

xlabel('Signal Level Relative to Average (dB)');

legend('35 kHz', '45 kHz', '60 kHz', '75 kHz', '85 kHz', ...

 'Location', 'NorthWest');

minValues = [dbEnvelope(1, 1) dbEnvelope(2, 1) dbEnvelope(3, 1) ...

 dbEnvelope(4, 1) dbEnvelope(5, 1)];

minX = min(minValues);

minX = int32(ceil(-minX / 10)) * -10;

xlim([minX 0]);

185

Appendix B

Source Code for Chapter 3

B.1 FFT Convolution

function [y] = fconv(x, h, normalize)

%FCONV Fast Convolution

% y = FCONV(x, h) convolves x and h, where

% x is the time domain signal and

% h is the filter kernel.

%

% y = FCONV(x, h, normalize) convolves x and h and normalizes the

% result to -1..1 if normalize is 'true'.

 if (nargin < 2)

 error('Too few arguments specified in function.');

 end

 if (nargin > 3)

 error('Too many arguments specified in function.');

 end

 if (nargin == 2)

 normalize = 'false';

 end

 lenY = length(x) + length(h) - 1;

 lenYPow2 = pow2(nextpow2(lenY)); % Find smallest power of 2 > lenY

 X = fft(x, lenYPow2); % FFT

 H = fft(h, lenYPow2); % FFT

 Y = X .* H; % Multiplication in frequency domain

 y = real(ifft(Y, lenYPow2)); % Inverse FFT

 y = y(1:lenY); % Use first lenY elements

 if (strcmp(normalize, 'true') == 1)

 y = y / max(abs(y)); % Normalize output

 end

B.2 Hard Limiter

function [y] = hardlimit(x)

%HARDLIMIT limits the amplitude of a signal.

% As indicated in,

% J. Jones, "Hard-Limiting of Two Signals in Random Noise,"

% IEEE Trans. on Information Theory, Vol. 9, Iss. 1, pp. 34–42, Jan. 1963,

% the ideal limiter is described by its amplitude characteristic g(x),

% with which the limiter output y(t) can be expressed uniquely in terms

% of the input as

% y(t) = g[x(t)] = {+1, 0, -1} if x(t) {> 0, = 0, < 0}.

 y = 2 * ((x > 0) - 0.5);

186

B.3 Second-Order IIR Bandpass Filter

function [y] = filterSignal(x, samplingRate, freq, symbolsPerSecond)

%FILTERSIGNAL implements a second-order IIR bandpass filter.

% y = FILTERSIGNAL(x, samplingRate, freq, symbolsPerSecond)

% produces a bandpass-filtered signal of the input signal x with a

% -3 dB bandwidth of symbolsPerSecond Hz centered on freq Hz.

% The samplingRate of x must be provided as an input argument.

 f = freq / samplingRate;

 bw = symbolsPerSecond / samplingRate;

 R = 1 - 3 * bw;

 K = (1 - 2 * R * cos(2 * pi * f) + R * R) / (2 - 2 * cos(2 * pi * f));

 a0 = 1 - K;

 a1 = 2 * (K - R) * cos(2 * pi * f);

 a2 = R * R - K;

 b1 = 2 * R * cos(2 * pi * f);

 b2 = -R * R;

 numSamples = length(x);

 y = zeros(1, numSamples);

 y(1) = 0;

 y(2) = 0;

 for i = 3:numSamples

 y(i) = a0 * x(i) + a1 * x(i - 1) + a2 * x(i - 2) + ...

 b1 * y(i - 1) + b2 * y(i - 2);

 end

B.4 Generation of Chirp Signals and FSK and PSK Waveforms

% Author: Brian Borowski

% Date created: 09/15/2009

% Date last modified: 03/27/2010

% Generates the signals used to test a channel. The signals include

% sequential 50ms LFM chirps and FSK and PSK waveforms.

%% Start with a clean slate.

clear all;

close all;

clc;

%% Key parameters

generateData = 0;

chirpSeconds = 5; % 1 long chirp to precede packet stream

chirpMs = 50; % Used in channel characterization

samplingRate = 48000;

symbolsPerSecond = 3500;

carrierFreq = 17500;

numberOfPackets = 50;

%% Generate sounding signal.

chirpSignal = chirp(0, samplingRate/2, samplingRate, chirpMs/1000);

Xr = real(chirpSignal);

Xr = Xr * 0.98;

soundingSignal = zeros(1, samplingRate * 60);

lenChirp = length(chirpSignal);

187

lenSounding = length(soundingSignal);

numChirps = lenSounding / lenChirp;

offset = 0;

for i = 1:numChirps

 soundingSignal(1+offset:lenChirp+offset) = Xr;

 offset = offset + lenChirp;

end

wavwrite(soundingSignal, samplingRate, 'Reference/SoundingSignal.wav');

%% Only use this section once to generate the packet data.

if (generateData)

 packetSizeBytes = 256;

 packetSizeBits = packetSizeBytes * 8;

 data = randi([0 1], packetSizeBits, 1);

 dlmwrite('PacketBits.txt', data, 'delimiter', ' ', 'newline','pc');

end

%% Parameters common to both FSK and PSK modulation

data = dlmread('Reference/PacketBits.txt', ' ');

samplesPerBit = floor(samplingRate / symbolsPerSecond);

if (mod(carrierFreq, symbolsPerSecond))

 error('Carrier frequency must be a multiple of symbol rate.');

end

fc = [(carrierFreq - symbolsPerSecond / 2) ...

 (carrierFreq + symbolsPerSecond / 2)];

if (symbolsPerSecond < 500)

 chirpRange = [(carrierFreq - 500) (carrierFreq + 500)];

else

 chirpRange = [(carrierFreq - symbolsPerSecond) ...

 (carrierFreq + symbolsPerSecond)];

end

packetChirp = chirp(chirpRange(1), chirpRange(2), samplingRate, 0.05);

packetChirpReal = real(packetChirp);

guardTime = zeros(1, 0.01*samplingRate);

numberOfBits = length(data);

interPacketSilence = zeros(1, samplingRate);

streamChirp = chirp(0, 24000, samplingRate, chirpSeconds);

streamReal = real(streamChirp);

streamReal = streamReal * 0.98;

filename = sprintf('Reference/ChirpRef_%ds.wav', chirpSeconds);

wavwrite(streamReal, samplingRate, filename);

%% Generate FSK waveform.

txFSK = zeros(1, samplesPerBit * numberOfBits);

t = 0.0;

for i = 1:numberOfBits

 for j = 1:samplesPerBit

 t = t + 2 * pi * fc(data(i)+1) / samplingRate;

 if (t > pi)

 t = t - 2 * pi;

 end

 txFSK(j + samplesPerBit*(i-1)) = cos(t);

 end

end

packetFSK = [packetChirpReal guardTime txFSK interPacketSilence];

packetFSK = packetFSK * 0.98;

188

%% Generate stream of FSK packets.

% Start with one long LFM chirp to accurately estimate the LTI channel.

lenPacketFSK = length(packetFSK);

lenStreamChirp = length(streamChirp);

offset = lenStreamChirp + length(interPacketSilence);

packetFSKStream = zeros(1, numberOfPackets*lenPacketFSK + offset);

packetFSKStream(1:lenStreamChirp) = streamReal;

for i = 1:numberOfPackets

 packetFSKStream(1+offset:lenPacketFSK+offset) = packetFSK;

 offset = offset + lenPacketFSK;

end

filename = sprintf('Reference/FSKStream_%dHz_%dbps.wav', ...

 carrierFreq, symbolsPerSecond);

wavwrite(packetFSKStream, samplingRate, filename);

%% Generate PSK waveform.

txPSK = zeros(1, samplesPerBit * numberOfBits);

t = 0.0;

for i = 1:numberOfBits

 offset = samplesPerBit * (i-1);

 for j = 1:samplesPerBit

 t = t + 2 * pi * carrierFreq / samplingRate;

 if (t > pi)

 t = t - 2 * pi;

 end

 if (data(i) == 0)

 txPSK(j + offset) = -cos(t);

 else

 txPSK(j + offset) = cos(t);

 end

 end

 t = 0.0;

end

packetPSK = [packetChirpReal guardTime txPSK interPacketSilence];

packetPSK = packetPSK * 0.98;

%% Generate stream of PSK packets.

% Start with one long LFM chirp to accurately estimate the LTI channel.

lenPacketPSK = length(packetPSK);

lenStreamChirp = length(streamChirp);

offset = lenStreamChirp + length(interPacketSilence);

packetPSKStream = zeros(1, numberOfPackets*lenPacketPSK + offset);

packetPSKStream(1:lenStreamChirp) = streamReal;

for i = 1:numberOfPackets

 packetPSKStream(1+offset:lenPacketPSK+offset) = packetPSK;

 offset = offset + lenPacketPSK;

end

filename = sprintf('Reference/PSKStream_%dHz_%dbps.wav', ...

 carrierFreq, symbolsPerSecond);

wavwrite(packetPSKStream, samplingRate, filename);

B.5 Verification of Channel Simulation

% Author: Brian Borowski

% Date created: 09/15/2009

% Date last modified: 03/27/2010

% Computes the BERs of real packets transmitted through the Rubbermaid tub

189

% and compares the values to that obtained when convolving the packet

% waveform with the tub's estimated impulse response.

%% Start with a clean slate.

clear all;

close all;

clc;

%% Initialize basic parameters.

samplingRate = 48000;

symbolsPerSecond = 2500;

carrierFreq = 7500;

numberOfPackets = 50;

useLimiter = 0;

%% Generate reference chirp signal.

chirpSeconds = 5;

streamChirp = chirp(0, samplingRate/2, samplingRate, chirpSeconds);

%% Initialize variables used in generating packets.

data = dlmread('Reference/PacketBits.txt', ' ');

ir_FSK_file = 'Tub/IR_FSK.wav';

ir_PSK_file = 'Tub/IR_PSK.wav';

numberOfBits = length(data);

samplesPerBit = floor(samplingRate / symbolsPerSecond);

if (mod(carrierFreq, symbolsPerSecond))

 error('Carrier frequency must be a multiple of symbol rate.');

end

fc = [(carrierFreq - symbolsPerSecond / 2) ...

 (carrierFreq + symbolsPerSecond / 2)];

if (symbolsPerSecond < 500)

 chirpRange = [(carrierFreq - 500) (carrierFreq + 500)];

else

 chirpRange = [(carrierFreq - symbolsPerSecond) ...

 (carrierFreq + symbolsPerSecond)];

end

packetChirp = chirp(chirpRange(1), chirpRange(2), samplingRate, 0.05);

guardTime = zeros(1, 0.01 * samplingRate);

samplesPerPacket = length(packetChirp) + length(guardTime) + ...

 samplesPerBit * numberOfBits;

%% CPFSK modulation

txFSK = zeros(1, samplesPerBit * numberOfBits);

t = 0.0;

for i = 1:numberOfBits

 for j = 1:samplesPerBit

 t = t + 2 * pi * fc(data(i)+1) / samplingRate;

 if (t > pi)

 t = t - 2 * pi;

 end

 txFSK(j + samplesPerBit*(i-1)) = cos(t);

 end

end

%% PSK modulation

txPSK = zeros(1, samplesPerBit * numberOfBits);

t = 0.0;

for i = 1:numberOfBits

 offset = samplesPerBit * (i-1);

190

 for j = 1:samplesPerBit

 t = t + 2 * pi * carrierFreq / samplingRate;

 if (t > pi)

 t = t - 2 * pi;

 end

 if (data(i) == 0)

 txPSK(j + offset) = -cos(t);

 else

 txPSK(j + offset) = cos(t);

 end

 end

 t = 0.0;

end

%% Assemble packets.

txFSK = [guardTime packetChirp guardTime txFSK];

txPSK = [guardTime packetChirp guardTime txPSK];

%% Read raw data samples.

filename = sprintf('Recordings5/FSKStream_%dHz_%dbps.wav', ...

 carrierFreq, symbolsPerSecond);

rawSamplesFSK = wavread(filename);

filename = sprintf('Recordings5/PSKStream_%dHz_%dbps.wav', ...

 carrierFreq, symbolsPerSecond);

rawSamplesPSK = wavread(filename);

%% Compute IR at time of FSK test.

irFSK = fftshift(...

 real(xcorr(rawSamplesFSK(1:10*samplingRate), conj(streamChirp))));

[maxValue maxIndexFSK] = max(irFSK);

earlyPeakIndex = ...

 find(irFSK(maxIndexFSK - 0.0005*samplingRate:end) > 0.25*maxValue);

[~, mainPeakIndex] = max(irFSK(maxIndexFSK - 0.0005*samplingRate:end));

offset = mainPeakIndex - earlyPeakIndex;

irFSK = irFSK(maxIndexFSK - offset:maxIndexFSK + 0.050*samplingRate - offset);

irFSK = irFSK / max(abs(irFSK));

figure;

n = (1:length(irFSK))*1000/samplingRate;

plot(n, irFSK);

xlim([0 10]);

ylim([-1 1]);

title('Impulse Response of Tub during FSK Test', 'FontWeight', 'bold');

xlabel('Time Delay (ms)');

ylabel('Intensity');

figure;

[h w] = freqz(irFSK, 1);

f = w/(2*pi) * samplingRate/1000;

subplot(2, 1, 1),

plot(f, mag2db(abs(h))),

xlim([0 f(end)]),

ylim([-30 30]),

title('Frequency Response', 'FontWeight', 'bold'),

xlabel('Frequency (kHz)'),

ylabel('Magnitude (dB)');

phase = unwrap(angle(h)) * 180/pi;

subplot(2, 1, 2),

plot(f, phase),

xlim([0 f(end)]),

title('Phase Response', 'FontWeight', 'bold'),

191

xlabel('Frequency (kHz)'),

ylabel('Phase (degrees)');

irFSK = irFSK * 0.98;

wavwrite(irFSK, samplingRate, 'Tub/IR_FSK.wav');

%% Compute IR at time of PSK test.

irPSK = fftshift(...

 real(xcorr(rawSamplesPSK(1:10*samplingRate), conj(streamChirp))));

[maxValue maxIndexPSK] = max(irPSK);

earlyPeakIndex = ...

 find(irPSK(maxIndexPSK - 0.0005 * samplingRate:end) > 0.25*maxValue);

[mainPeak mainPeakIndex] = max(irPSK(maxIndexPSK - 0.0005*samplingRate:end));

offset = mainPeakIndex - earlyPeakIndex;

irPSK = irPSK(maxIndexPSK - offset:maxIndexPSK + 0.050*samplingRate - offset);

irPSK = irPSK / max(abs(irPSK));

figure;

n = (1:length(irPSK))*1000/samplingRate;

plot(n, irPSK);

xlim([0 10]);

ylim([-1 1]);

title('Impulse Response of Tub during PSK Test', 'FontWeight', 'bold');

xlabel('Time Delay (ms)');

ylabel('Intensity');

figure;

[h w] = freqz(irPSK, 1);

f = w/(2*pi) * samplingRate/1000;

subplot(2, 1, 1),

plot(f, mag2db(abs(h))),

xlim([0 f(end)]),

ylim([-30 30]),

title('Frequency Response', 'FontWeight', 'bold'),

xlabel('Frequency (kHz)'),

ylabel('Magnitude (dB)');

phase = unwrap(angle(h)) * 180/pi;

phase = phase * 180 / pi;

subplot(2, 1, 2),

plot(f, phase),

xlim([0 f(end)]),

title('Phase Response', 'FontWeight', 'bold'),

xlabel('Frequency (kHz)'),

ylabel('Phase (degrees)');

irPSK = irPSK * 0.98;

wavwrite(irPSK, samplingRate, 'Tub/IR_PSK.wav');

%% Convolve with impulse response.

txFSK = fconv(txFSK, irFSK');

txPSK = fconv(txPSK, irPSK');

%% Generate reference signals for symbols.

t = 0:samplesPerBit-1;

cos0 = cos(2 * pi * fc(1)/samplingRate * t);

sin0 = sin(2 * pi * fc(1)/samplingRate * t);

cos1 = cos(2 * pi * fc(2)/samplingRate * t);

sin1 = sin(2 * pi * fc(2)/samplingRate * t);

psk0 = -cos(2 * pi * carrierFreq/samplingRate * t);

psk1 = cos(2 * pi * carrierFreq/samplingRate * t);

192

if (symbolsPerSecond < 500)

 chirpRange = [(carrierFreq - 500) (carrierFreq + 500)];

else

 chirpRange = [(carrierFreq - symbolsPerSecond) ...

 (carrierFreq + symbolsPerSecond)];

end

packetChirp = chirp(chirpRange(1), chirpRange(2), samplingRate, 0.05);

%% Synchronize on packet chirp signals.

correlatedSamples = real(fftshift(xcorr(txFSK, conj(packetChirp))));

[~, maxIndex] = max(correlatedSamples);

len = length(correlatedSamples);

if (maxIndex > len/2)

 maxIndex = maxIndex - len;

end

start = maxIndex + length(packetChirp)+length(guardTime);

txFSK = txFSK(start:start+samplesPerBit * numberOfBits);

correlatedSamples = real(fftshift(xcorr(txPSK, conj(packetChirp))));

[~, maxIndex] = max(correlatedSamples);

len = length(correlatedSamples);

if (maxIndex > len/2)

 maxIndex = maxIndex - len;

end

start = maxIndex + length(packetChirp)+length(guardTime);

txPSK = txPSK(start:start+samplesPerBit * numberOfBits);

%% Demodulation

expectedData = dlmread('Reference/PacketBits.txt', ' ');

expectedData = expectedData';

numberOfBits = length(expectedData);

guardTime = zeros(1, 0.01*samplingRate);

interPacketSilence = zeros(1, samplingRate);

packet = zeros(1, samplesPerBit * numberOfBits);

offsetFSK = maxIndexFSK + length(streamChirp) + length(interPacketSilence)/2;

offsetPSK = maxIndexPSK + length(streamChirp) + length(interPacketSilence)/2;

numberOfRawSamplesFSK = length(rawSamplesFSK);

numberOfRawSamplesPSK = length(rawSamplesPSK);

berFSK_e = zeros(1, numberOfPackets + 1);

berFSK_q = zeros(1, numberOfPackets + 1);

berPSK = zeros(1, numberOfPackets + 1);

disp('Bit Error Rates (BERs)');

disp('FSK-E FSK-Q PSK');

disp('--------------------');

for iter = 1:numberOfPackets + 1

 if (iter ~= numberOfPackets + 1)

 endSample = min(...

 length(interPacketSilence) + samplesPerPacket + offsetFSK, ...

 numberOfRawSamplesFSK);

 snip = rawSamplesFSK(1 + offsetFSK:endSample);

 correlatedSamples = real(fftshift(xcorr(snip, conj(packetChirp))));

 [~, maxIndex] = max(correlatedSamples);

 start = maxIndex + length(packetChirp) + length(guardTime);

 packet = snip(start:start + samplesPerBit*numberOfBits);

 packet = packet';

 else

 packet = txFSK;

193

 end

 % Prepare FSK signal for envelope detector.

 if (useLimiter)

 zeroSignal = abs(hilbert(filterSignal(...

 hardlimit(packet), samplingRate, fc(1), symbolsPerSecond)));

 oneSignal = abs(hilbert(filterSignal(...

 hardlimit(packet), samplingRate, fc(2), symbolsPerSecond)));

 else

 zeroSignal = abs(hilbert(filterSignal(...

 packet, samplingRate, fc(1), symbolsPerSecond)));

 oneSignal = abs(hilbert(filterSignal(...

 packet, samplingRate, fc(2), symbolsPerSecond)));

 maxZero = max(zeroSignal);

 maxOne = max(oneSignal);

 if (maxZero > maxOne)

 oneSignal = oneSignal * (maxZero/maxOne);

 else

 zeroSignal = zeroSignal * (maxOne/maxZero);

 end

 end

 diff = oneSignal - zeroSignal;

 rxFSK_e = zeros(1, numberOfBits);

 rxFSK_q = zeros(1, numberOfBits);

 temp = floor(samplesPerBit / 2);

 for i = 1:numberOfBits

 % Envelope detector for FSK demodulation

 % Sample in second half of symbol.

 rcv = sum(diff((i-1)*samplesPerBit + temp:i*samplesPerBit));

 rxFSK_e(i) = (rcv > 0);

 % Quadrature (energy) detector

 if (useLimiter)

 rcv = hardlimit(packet((i-1)*samplesPerBit + 1:i*samplesPerBit));

 else

 rcv = packet((i-1)*samplesPerBit + 1:i*samplesPerBit);

 end

 Izero = rcv .* cos0;

 Qzero = rcv .* sin0;

 Ione = rcv .* cos1;

 Qone = rcv .* sin1;

 z1 = (sum(Izero))^2;

 z2 = (sum(Qzero))^2;

 z3 = (sum(Ione))^2;

 z4 = (sum(Qone))^2;

 energy0 = z1 + z2;

 energy1 = z3 + z4;

 rxFSK_q(i) = (energy1 > energy0);

 end

 berFSK_e(iter) = 100 * sum(abs(rxFSK_e - expectedData)) / numberOfBits;

 berFSK_q(iter) = 100 * sum(abs(rxFSK_q - expectedData)) / numberOfBits;

 if (iter ~= numberOfPackets + 1)

 endSample = min(...

 length(interPacketSilence) + samplesPerPacket+offsetPSK, ...

 numberOfRawSamplesPSK);

 snip = rawSamplesPSK(1 + offsetPSK:endSample);

 correlatedSamples = real(fftshift(xcorr(snip, conj(packetChirp))));

194

 [~, maxIndex] = max(correlatedSamples);

 start = maxIndex + length(packetChirp) + length(guardTime);

 packet = snip(start:start + samplesPerBit*numberOfBits);

 packet = packet';

 else

 packet = txPSK;

 end

 if (iter == 1 || iter == numberOfPackets + 1)

 firstSymbol = packet(1:samplesPerBit);

 offset = 0;

 oldZ0 = -inf;

 oldZ1 = -inf;

 phi = 0;

 for i = 1:24

 if (expectedData(1) == 1)

 one = firstSymbol .* psk1;

 z1 = (sum(one));

 if (z1 > oldZ1)

 oldZ1 = z1;

 offset = phi;

 end

 phi = phi + (2 * pi) / 24;

 psk1 = cos(2 * pi * carrierFreq/samplingRate * t + phi);

 else

 zero = firstSymbol .* psk0;

 z0 = (sum(zero));

 if (z0 > oldZ0)

 oldZ0 = z0;

 offset = phi;

 end

 phi = phi + (2 * pi) / 24;

 psk0 = -cos(2 * pi * carrierFreq/samplingRate * t + phi);

 end

 end

 psk0 = -cos(2 * pi * carrierFreq/samplingRate * t + offset);

 psk1 = cos(2 * pi * carrierFreq/samplingRate * t + offset);

 end

 % PSK demodulation via a correlation receiver

 rxPSK = zeros(1, numberOfBits);

 for i = 1:numberOfBits

 rcv = packet((i-1)*samplesPerBit + 1:i*samplesPerBit);

 zero = rcv .* psk0;

 one = rcv .* psk1;

 z0 = (sum(zero));

 z1 = (sum(one));

 rxPSK(i) = (z1 > z0);

 end

 berPSK(iter) = 100 * sum(abs(rxPSK - expectedData)) / numberOfBits;

 % Display FSK/PSK bit error rates for a single packet.

 if (iter ~= numberOfPackets + 1)

 s = sprintf('%.2f\t%.2f\t%.2f', ...

 berFSK_e(iter), berFSK_q(iter), berPSK(iter));

 disp(s);

 offsetFSK = offsetFSK + samplesPerPacket + length(interPacketSilence);

195

 offsetPSK = offsetPSK + samplesPerPacket + length(interPacketSilence);

 end

end

%% Display average bit error rates.

disp('--------------------');

avgBerFSK_e = 0;

avgBerFSK_q = 0;

avgBerPSK = 0;

for i = 1:numberOfPackets

 avgBerFSK_e = avgBerFSK_e + berFSK_e(i);

 avgBerFSK_q = avgBerFSK_q + berFSK_q(i);

 avgBerPSK = avgBerPSK + berPSK(i);

end

avgBerFSK_e = avgBerFSK_e / numberOfPackets;

avgBerFSK_q = avgBerFSK_q / numberOfPackets;

avgBerPSK = avgBerPSK / numberOfPackets;

disp('Transmitted Data');

s = sprintf('BER for FSK modulation (envelope detection): %.2f%%', ...

 avgBerFSK_e);

disp(s);

s = sprintf('BER for FSK modulation (quadrature receiver): %.2f%%', ...

 avgBerFSK_q);

disp(s);

s = sprintf('BER for PSK modulation: %.2f%%', avgBerPSK);

disp(s);

disp('--------------------');

index = numberOfPackets + 1;

disp('Simulation with Impulse Response');

s = sprintf('BER for FSK modulation (envelope detection): %.2f%%', ...

 berFSK_e(index));

disp(s);

s = sprintf('BER for FSK modulation (quadrature receiver): %.2f%%', ...

 berFSK_q(index));

disp(s);

s = sprintf('BER for PSK modulation: %.2f%%', berPSK(index));

disp(s);

B.6 Main Function for OMNeT++ Simulation

#include <stdio.h>

#include "libchannel.h"

#include "libphy.h"

#include "cownedobject.h"

#include "envirdefs.h"

#include "startup.h"

#include "ver.h"

USING_NAMESPACE

//

// The main() function

//

ENVIR_API int main(int argc, char *argv[])

{

 cStaticFlag dummy;

196

 printf(OMNETPP_PRODUCT " Discrete Event Simulation "

 " (C) 1992-2008 Andras Varga, OpenSim Ltd.\n");

 printf("Version: " OMNETPP_VERSION_STR ", build: " OMNETPP_BUILDID

 ", edition: " OMNETPP_EDITION "\n");

 printf("See the license for distribution terms and warranty disclaimer\n");

 // Call MATLAB application initialization function.

 if (!mclInitializeApplication(NULL,0)) {

 fprintf(stderr, "Could not initialize the MATLAB application.\n");

 exit(-1);

 }

 // Call the library initialization functions.

 if (!libchannelInitialize()){

 fprintf(stderr, "Could not initialize libchannel properly.\n");

 exit(-1);

 }

 if (!libphyInitialize()){

 fprintf(stderr, "Could not initialize libphy properly.\n");

 exit(-1);

 }

 int exitcode = setupUserInterface(argc, argv, NULL);

 // Call the library termination functions.

 libphyTerminate();

 libchannelTerminate();

 // Call MATLAB application termination function.

 mclTerminateApplication();

 printf("\nEnd.\n");

 return exitcode;

}

197

Appendix C

Validation of Emulator in Chapter 3

Comparison of bit error rates obtained with packet transmission through the office test environ-

ment (Average BER) versus convolution with an impulse response estimate (Simulated BER).

C.1 7.5 kHz, 250 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

12:33 P.M.

10/1/2009

12:33 P.M.

10/1/2009

12:33 P.M.

10/1/2009

12:33 P.M.

10/1/2009

12:37 P.M.

Frequency (Hz) 7500

Bit Rate (bps) 250

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00

13 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.00 0.00 0.00

17 0.00 0.00 0.00 0.00 0.00

18 0.00 0.00 0.00 0.00 0.00

19 0.00 0.00 0.00 0.00 0.00

20 0.00 0.00 0.00 0.00 0.00

Average BER 0.00 0.00 0.00 0.00 0.00

Simulated BER 0.00 0.00 0.00 0.00 0.00

% Difference 0.00 0.00 0.00 0.00 0.00

198

C.2 7.5 kHz, 500 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

12:43 P.M.

10/1/2009

12:43 P.M.

10/1/2009

12:43 P.M.

10/1/2009

12:43 P.M.

10/1/2009

12:48 P.M.

Frequency (Hz) 7500

Bit Rate (bps) 500

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00

13 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.00 0.00 0.00

17 0.00 0.00 0.00 0.00 0.00

18 0.00 0.00 0.00 0.00 0.00

19 0.00 0.00 0.00 0.00 0.00

20 0.00 0.00 0.00 0.00 0.00

21 0.00 0.00 0.00 0.00 0.00

22 0.00 0.00 0.00 0.00 0.00

23 0.00 0.00 0.00 0.00 0.00

24 0.00 0.00 0.00 0.00 0.00

25 0.00 0.00 0.00 0.00 0.00

26 0.00 0.00 0.00 0.00 0.00

27 0.00 0.00 0.00 0.00 0.00

28 0.00 0.00 0.00 0.00 0.00

29 0.00 0.00 0.00 0.00 0.00

30 0.00 0.00 0.00 0.00 0.00

31 0.00 0.00 0.00 0.00 0.00

32 0.00 0.00 0.00 0.00 0.00

33 0.00 0.00 0.00 0.00 0.00

34 0.00 0.00 0.00 0.00 0.00

35 0.00 0.00 0.00 0.00 0.00

36 0.00 0.00 0.00 0.00 0.00

37 0.00 0.00 0.00 0.00 0.00

38 0.00 0.00 0.00 0.00 0.00

39 0.00 0.00 0.00 0.00 0.00

199

40 0.00 0.00 0.00 0.00 0.00

41 0.00 0.00 0.00 0.00 0.00

42 0.00 0.00 0.00 0.00 0.00

43 0.00 0.00 0.00 0.00 0.00

44 0.00 0.00 0.00 0.00 0.00

45 0.00 0.00 0.00 0.00 0.00

46 0.00 0.00 0.00 0.00 0.00

47 0.00 0.00 0.00 0.00 0.00

48 0.00 0.00 0.00 0.00 0.00

49 0.00 0.00 0.00 0.00 0.00

50 0.00 0.00 0.00 0.00 0.00

Average BER 0.00 0.00 0.00 0.00 0.00

Simulated BER 0.00 0.00 0.00 0.00 0.00

% Difference 0.00 0.00 0.00 0.00 0.00

C.3 7.5 kHz, 1250 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

12:51 P.M.

10/1/2009

12:51 P.M.

10/1/2009

12:51 P.M.

10/1/2009

12:51 P.M.

10/1/2009

12:54 P.M.

Frequency (Hz) 7500

Bit Rate (bps) 1250

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 6.10 12.99 6.05 4.88 0.00

2 5.96 12.79 6.25 4.74 0.00

3 6.10 12.89 6.30 4.74 0.00

4 5.91 12.84 6.15 4.54 0.00

5 6.01 12.89 6.15 5.03 0.00

6 6.05 12.74 6.10 4.54 0.00

7 5.91 12.79 6.25 4.39 0.00

8 5.96 12.50 6.20 4.39 0.00

9 5.91 12.84 6.01 4.83 0.00

10 5.62 12.55 6.20 4.49 0.00

11 5.76 12.74 6.20 4.69 0.00

12 5.32 12.65 6.10 4.30 0.00

13 5.47 12.55 6.05 4.64 0.00

14 5.52 12.65 6.15 4.54 0.00

15 5.57 12.60 6.10 4.20 0.00

16 5.27 12.65 6.01 4.49 0.00

17 5.47 12.30 6.05 4.59 0.00

18 5.32 12.50 6.05 4.39 0.00

19 5.13 12.30 5.96 4.54 0.00

20 5.18 12.40 5.86 4.05 0.00

21 5.08 12.55 5.96 4.15 0.00

22 5.08 12.26 5.91 4.35 0.00

23 5.22 12.35 5.86 4.30 0.00

24 4.83 12.65 5.96 4.30 0.00

200

25 4.74 12.35 6.05 4.20 0.00

26 4.74 12.35 5.86 4.20 0.00

27 4.74 12.30 5.71 3.91 0.00

28 4.30 11.72 5.91 4.25 0.00

29 4.49 12.21 5.96 4.10 0.00

30 4.49 11.96 5.91 4.15 0.00

31 4.69 12.16 5.81 3.91 0.00

32 4.10 12.11 5.62 4.00 0.00

33 4.64 12.50 5.57 4.00 0.00

34 4.30 12.06 5.42 4.05 0.00

35 4.15 12.06 5.52 4.30 0.00

36 4.30 12.11 5.62 4.15 0.00

37 3.91 11.62 5.57 3.86 0.00

38 3.76 11.57 5.52 3.71 0.00

39 3.86 11.96 5.57 4.05 0.00

40 3.76 12.11 5.52 4.10 0.00

41 3.37 11.77 5.27 3.76 0.00

42 3.32 11.96 5.47 3.96 0.00

43 3.03 11.77 5.42 3.86 0.00

44 3.37 11.67 5.27 3.81 0.00

45 3.08 11.67 5.32 3.86 0.00

46 3.61 11.77 5.18 3.71 0.00

47 2.98 11.62 5.18 3.86 0.00

48 2.98 11.43 5.08 3.56 0.00

49 2.78 11.18 5.22 3.86 0.00

50 2.88 11.57 5.03 3.66 0.00

Average BER 4.68 12.25 5.79 4.22 0.00

Simulated BER 0.00 1.76 0.00 3.03 0.00

% Difference 4.68 10.49 5.79 1.19 0.00

C.4 7.5 kHz, 2500 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

12:57 P.M.

10/1/2009

12:57 P.M.

10/1/2009

12:57 P.M.

10/1/2009

12:57 P.M.

10/1/2009 1:00

P.M.

Frequency (Hz) 7500

Bit Rate (bps) 2500

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 5.08 3.86 2.15 0.44 0.00

2 4.15 3.86 2.20 0.44 0.00

3 4.59 3.61 2.10 0.34 0.00

4 4.39 3.86 2.05 0.39 0.00

5 4.98 3.76 2.25 0.34 0.00

6 4.93 4.00 2.20 0.39 0.00

7 4.79 3.96 2.20 0.44 0.00

8 4.54 3.81 2.20 0.44 0.00

201

9 4.54 3.61 2.20 0.34 0.00

10 4.79 3.81 2.15 0.39 0.00

11 4.64 3.86 2.20 0.34 0.00

12 4.49 3.76 2.10 0.39 0.00

13 4.83 3.91 2.10 0.39 0.00

14 5.03 3.76 2.00 0.34 0.00

15 5.03 3.91 2.15 0.39 0.00

16 4.15 3.61 2.29 0.39 0.00

17 4.44 3.71 2.15 0.34 0.00

18 4.64 3.56 2.34 0.39 0.00

19 4.83 3.86 2.15 0.34 0.00

20 4.49 3.47 2.20 0.39 0.00

21 4.59 3.71 2.15 0.44 0.00

22 4.64 3.52 1.95 0.39 0.00

23 4.49 3.96 2.15 0.34 0.00

24 4.79 3.66 2.15 0.39 0.00

25 4.79 3.66 2.20 0.39 0.00

26 4.79 3.66 2.10 0.34 0.00

27 4.54 3.56 2.15 0.39 0.00

28 4.35 3.61 2.15 0.34 0.00

29 4.25 3.71 2.25 0.34 0.00

30 5.22 3.66 2.20 0.44 0.00

31 4.79 3.42 2.29 0.39 0.00

32 4.20 3.52 2.15 0.24 0.00

33 4.69 3.61 2.05 0.29 0.00

34 4.98 3.42 2.10 0.39 0.00

35 4.20 3.71 2.10 0.34 0.00

36 4.69 3.76 2.00 0.39 0.00

37 4.39 3.86 2.05 0.34 0.00

38 4.39 3.71 2.20 0.34 0.00

39 4.64 3.76 2.10 0.34 0.00

40 4.39 3.76 2.05 0.29 0.00

41 4.39 3.66 2.10 0.29 0.00

42 4.79 3.71 2.05 0.34 0.00

43 4.98 3.71 2.15 0.34 0.00

44 4.54 3.76 2.00 0.29 0.00

45 4.79 3.47 2.05 0.39 0.00

46 5.08 3.47 2.10 0.34 0.00

47 4.39 3.56 2.10 0.34 0.00

48 4.35 3.61 2.10 0.34 0.00

49 4.64 3.66 2.05 0.34 0.00

50 4.79 3.42 1.95 0.29 0.00

Average BER 4.64 3.70 2.13 0.36 0.00

Simulated BER 4.44 2.93 14.60 4.93 0.00

% Difference 0.20 0.77 12.47 4.57 0.00

202

C.5 7.5 kHz, 3750 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

1:02 P.M.

10/1/2009 1:02

P.M.

10/1/2009

1:02 P.M.

10/1/2009 1:02

P.M.

10/1/2009 1:04

P.M.

Frequency (Hz) 7500

Bit Rate (bps) 3750

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 2.78 0.68 0.44 7.18 0.05

2 2.83 0.68 0.44 7.13 0.00

3 2.73 0.73 0.44 7.08 0.05

4 2.88 0.73 0.44 7.23 0.00

5 2.83 0.63 0.44 7.23 0.00

6 2.73 0.68 0.44 7.13 0.00

7 2.88 0.68 0.44 7.03 0.00

8 2.78 0.68 0.44 7.23 0.00

9 2.93 0.68 0.44 7.13 0.00

10 2.69 0.68 0.44 7.28 0.00

11 2.78 0.73 0.44 7.18 0.00

12 2.64 0.83 0.44 7.08 0.00

13 2.59 0.73 0.44 7.03 0.00

14 2.59 0.68 0.44 7.28 0.00

15 2.83 0.73 0.44 7.18 0.00

16 2.83 0.73 0.44 6.88 0.00

17 2.69 0.68 0.44 7.03 0.00

18 2.73 0.78 0.44 7.13 0.05

19 2.64 0.78 0.44 7.23 0.05

20 2.83 0.68 0.44 7.03 0.00

21 2.73 0.63 0.44 7.13 0.05

22 2.64 0.68 0.44 7.32 0.05

23 2.73 0.78 0.44 7.08 0.05

24 3.17 0.68 0.44 7.28 0.10

25 2.59 0.68 0.44 7.23 0.20

26 2.59 0.68 0.44 7.13 0.20

27 2.88 0.73 0.44 7.23 0.20

28 2.69 0.68 0.44 7.18 0.20

29 2.98 0.73 0.49 7.32 0.24

30 2.59 0.68 0.44 7.37 0.24

31 2.64 0.73 0.44 7.32 0.24

32 2.69 0.73 0.49 7.47 0.29

33 2.78 0.78 0.44 7.32 0.24

34 2.69 0.73 0.44 7.23 0.24

35 2.64 0.73 0.44 7.18 0.24

36 2.64 0.78 0.44 7.42 0.24

37 2.59 0.73 0.49 7.32 0.24

38 2.88 0.68 0.49 7.23 0.24

39 2.73 0.68 0.44 7.57 0.15

203

40 2.78 0.68 0.44 7.23 0.15

41 2.78 0.68 0.44 7.42 0.05

42 2.78 0.68 0.49 7.08 0.05

43 3.13 0.73 0.49 7.47 0.05

44 2.64 0.68 0.44 7.42 0.05

45 2.88 0.68 0.49 7.18 0.05

46 2.64 0.73 0.44 7.28 0.00

47 2.73 0.73 0.44 7.47 0.00

48 2.78 0.68 0.44 7.08 0.00

49 2.88 0.68 0.44 7.28 0.00

50 2.73 0.68 0.49 7.37 0.00

Average BER 2.76 0.71 0.45 7.23 0.09

Simulated BER 3.96 0.83 0.54 9.18 0.00

% Difference 1.20 0.12 0.09 1.95 0.09

C.6 12.5 kHz, 250 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

1:47 P.M.

10/1/2009 1:47

P.M.

10/1/2009

1:47 P.M.

10/1/2009 1:47

P.M.

10/1/2009 1:50

P.M.

Frequency (Hz) 12500

Bit Rate (bps) 250

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 24.46 0.00 0.00 0.00 0.00

2 24.46 0.00 0.00 0.00 0.00

3 24.46 0.00 0.00 0.00 0.00

4 24.46 0.00 0.00 0.00 0.00

5 24.46 0.00 0.00 0.00 0.00

6 24.46 0.00 0.00 0.00 0.00

7 24.46 0.00 0.00 0.00 0.00

8 24.46 0.00 0.00 0.00 0.00

9 24.46 0.00 0.00 0.00 0.00

10 24.46 0.00 0.00 0.00 0.00

11 24.46 0.00 0.00 0.00 0.00

12 24.46 0.00 0.00 0.00 0.00

13 24.46 0.00 0.00 0.00 0.00

14 24.46 0.00 0.00 0.00 0.00

15 24.46 0.00 0.00 0.00 0.00

16 24.46 0.00 0.00 0.00 0.00

17 24.46 0.00 0.00 0.00 0.00

18 24.46 0.00 0.00 0.00 0.00

19 24.46 0.00 0.00 0.00 0.00

20 24.46 0.00 0.00 0.00 0.00

Average BER 24.46 0.00 0.00 0.00 0.00

Simulated BER 24.46 0.00 0.00 0.00 0.00

% Difference 0.00 0.00 0.00 0.00 0.00

204

C.7 12.5 kHz, 500 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

1:55 P.M.

10/1/2009 1:55

P.M.

10/1/2009

1:55 P.M.

10/1/2009 1:55

P.M.

10/1/2009 2:04

P.M.

Frequency (Hz) 12500

Bit Rate (bps) 500

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 24.46 0.00 0.00 0.00 0.00

2 24.46 0.00 0.00 0.00 0.00

3 24.46 0.00 0.00 0.00 0.00

4 24.46 0.00 0.00 0.00 0.00

5 24.46 0.00 0.00 0.00 0.00

6 24.46 0.00 0.00 0.00 0.00

7 24.46 0.00 0.00 0.00 0.00

8 24.46 0.00 0.00 0.00 0.00

9 24.46 0.00 0.00 0.00 0.00

10 24.46 0.00 0.00 0.00 0.00

11 24.46 0.00 0.00 0.00 0.00

12 24.46 0.00 0.00 0.00 0.00

13 24.46 0.00 0.00 0.00 0.00

14 24.46 0.00 0.00 0.00 0.00

15 24.46 0.00 0.00 0.00 0.00

16 24.46 0.00 0.00 0.00 0.00

17 24.46 0.00 0.00 0.00 0.00

18 24.46 0.00 0.00 0.00 0.00

19 24.46 0.00 0.00 0.00 0.00

20 24.46 0.00 0.00 0.00 0.00

21 24.46 0.00 0.00 0.00 0.00

22 24.46 0.00 0.00 0.00 0.00

23 24.46 0.00 0.00 0.00 0.00

24 24.46 0.00 0.00 0.00 0.00

25 24.46 0.00 0.00 0.00 0.00

26 24.46 0.00 0.00 0.00 0.00

27 24.46 0.00 0.00 0.00 0.00

28 24.46 0.00 0.00 0.00 0.00

29 24.46 0.00 0.00 0.00 0.00

30 24.46 0.00 0.00 0.00 0.00

31 24.46 0.00 0.00 0.00 0.00

32 24.46 0.00 0.00 0.00 0.00

33 24.46 0.00 0.00 0.00 0.00

34 24.46 0.00 0.00 0.00 0.00

35 24.46 0.00 0.00 0.00 0.00

36 24.46 0.00 0.00 0.00 0.00

37 24.46 0.00 0.00 0.00 0.00

38 24.46 0.00 0.00 0.00 0.00

205

39 24.46 0.00 0.00 0.00 0.00

40 24.46 0.00 0.00 0.00 0.00

41 24.46 0.00 0.00 0.00 0.00

42 24.46 0.00 0.00 0.00 0.00

43 24.46 0.00 0.00 0.00 0.00

44 24.46 0.00 0.00 0.00 0.00

45 24.46 0.00 0.00 0.00 0.00

46 24.46 0.00 0.00 0.00 0.00

47 24.46 0.00 0.00 0.00 0.00

48 24.46 0.00 0.00 0.00 0.00

49 24.46 0.00 0.00 0.00 0.00

50 24.46 0.00 0.00 0.00 0.00

Average BER 24.46 0.00 0.00 0.00 0.00

Simulated BER 24.46 0.00 24.41 0.00 0.00

% Difference 0.00 0.00 24.41 0.00 0.00

C.8 12.5 kHz, 1250 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

2:07 P.M.

10/1/2009 2:07

P.M.

10/1/2009

2:07 P.M.

10/1/2009 2:07

P.M.

10/1/2009 2:11

P.M.

Frequency (Hz) 12500

Bit Rate (bps) 1250

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 0.00 15.97 21.29 16.41 0.00

2 0.05 15.77 20.17 16.21 0.00

3 0.00 15.43 19.97 15.92 0.00

4 0.10 15.92 20.70 16.31 0.00

5 0.00 15.92 20.85 16.21 0.00

6 0.00 15.72 20.07 16.11 0.00

7 0.15 15.63 20.26 16.02 0.00

8 0.15 15.77 20.65 16.21 0.00

9 0.05 15.92 20.85 16.26 0.00

10 0.05 15.82 20.26 16.06 0.00

11 0.15 15.67 20.36 16.16 0.00

12 0.10 15.72 20.70 16.16 0.00

13 0.10 15.92 20.80 16.36 0.00

14 0.10 15.77 20.31 16.16 0.00

15 0.10 15.67 20.51 16.11 0.00

16 0.10 15.63 20.80 16.11 0.00

17 0.05 15.77 20.56 16.16 0.00

18 0.10 15.67 20.36 16.02 0.00

19 0.10 15.67 20.46 16.06 0.00

20 0.10 15.72 20.61 16.16 0.00

21 0.05 15.72 20.70 16.11 0.00

22 0.05 15.72 20.51 16.16 0.00

206

23 0.05 15.67 20.36 16.06 0.00

24 0.05 15.82 20.70 16.26 0.00

25 0.00 15.72 20.70 16.21 0.00

26 0.00 15.77 20.70 16.21 0.00

27 0.00 15.72 20.56 15.97 0.00

28 0.05 15.77 20.61 16.16 0.00

29 0.00 15.67 20.56 15.97 0.00

30 0.00 15.63 20.61 16.02 0.00

31 0.00 15.72 20.56 16.06 0.00

32 0.05 15.63 20.65 15.97 0.00

33 0.00 15.63 20.70 15.92 0.00

34 0.00 15.72 20.65 16.11 0.00

35 0.00 15.67 20.61 16.11 0.00

36 0.00 15.63 20.56 15.97 0.00

37 0.10 15.63 20.65 15.92 0.00

38 0.00 15.82 20.65 16.11 0.00

39 0.44 16.11 21.14 16.5 0.00

40 0.00 15.63 20.02 15.97 0.00

41 0.00 15.33 19.43 15.72 0.00

42 0.00 15.33 19.43 15.63 0.00

43 0.00 15.23 19.29 15.53 0.00

44 0.00 15.23 19.38 15.53 0.00

45 0.00 15.33 19.43 15.63 0.00

46 0.00 15.19 19.48 15.43 0.00

47 0.00 15.53 19.38 15.87 0.00

48 0.00 15.38 19.43 15.67 0.00

49 0.00 15.28 19.53 15.58 0.00

50 0.00 15.23 19.43 15.48 0.00

Average BER 0.05 15.65 20.34 16.02 0.00

Simulated BER 0.29 14.26 20.02 14.94 0.00

% Difference 0.24 1.39 0.32 1.08 0.00

C.9 12.5 kHz, 2500 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

2:13 P.M.

10/1/2009

2:13 P.M.

10/1/2009

2:13 P.M.

10/1/2009

2:13 P.M.
10/1/2009 2:16

P.M.
Frequency (Hz) 12500

Bit Rate (bps) 2500

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 7.62 13.04 12.45 13.43 26.37

2 13.43 13.23 12.45 13.33 25.59

3 9.91 13.23 12.45 13.48 25.68

4 12.89 13.13 12.45 13.28 25.68

5 12.01 13.23 12.45 13.43 25.49

6 12.45 13.23 12.45 13.33 24.90

207

7 10.69 13.23 12.45 13.43 25.10

8 12.74 13.23 12.45 13.48 25.10

9 10.84 13.23 12.45 13.38 25.54

10 12.35 13.23 12.45 13.38 25.93

11 11.08 13.23 12.45 13.48 26.90

12 12.45 13.23 12.45 13.43 12.84

13 12.16 13.23 12.45 13.33 11.87

14 11.18 13.23 12.45 13.48 12.06

15 12.45 13.23 12.45 13.43 11.33

16 11.87 13.23 12.45 13.48 11.18

17 12.30 13.23 12.45 13.33 10.74

18 11.67 13.23 12.45 13.43 10.94

19 12.89 13.23 12.45 13.48 11.47

20 12.06 13.23 12.45 13.48 11.52

21 12.30 13.23 12.45 13.43 11.43

22 12.99 13.23 12.45 13.43 12.11

23 12.50 13.23 12.45 13.48 12.06

24 11.72 13.23 12.45 13.48 11.72

25 12.55 13.23 12.45 13.48 11.96

26 12.55 13.23 12.45 13.48 11.67

27 12.65 13.28 12.45 13.53 11.87

28 12.11 13.28 12.45 13.38 11.87

29 11.82 13.28 12.45 13.53 48.97

30 12.30 13.28 12.45 13.53 49.02

31 12.60 13.28 12.45 13.53 11.04

32 11.91 13.23 12.45 13.48 10.69

33 12.84 13.28 12.45 13.53 10.64

34 12.60 13.28 12.45 13.53 10.79

35 12.65 13.28 12.45 13.53 10.94

36 12.40 13.23 12.45 13.48 11.43

37 12.30 13.28 12.45 13.48 48.58

38 12.50 13.28 12.45 13.53 48.97

39 12.65 13.28 12.45 13.53 48.93

40 13.13 13.28 12.45 13.48 49.02

41 12.16 13.33 12.45 13.53 49.41

42 12.94 13.28 12.45 13.48 49.27

43 12.65 13.28 12.45 13.53 49.22

44 13.33 13.28 12.45 13.43 48.29

45 12.94 13.28 12.45 13.53 48.78

46 13.09 13.28 12.45 13.53 48.44

47 13.33 13.33 12.45 13.53 47.95

48 12.70 13.28 12.45 13.53 30.71

49 12.11 13.33 12.45 13.57 47.71

50 12.74 13.28 12.45 13.53 30.91

Average BER 12.24 13.25 12.45 13.47 25.81

Simulated BER 6.74 12.74 12.45 13.18 39.06

% Difference 5.50 0.51 0.00 0.29 13.25

208

C.10 12.5 kHz, 3125 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

2:18 P.M.

10/1/2009 2:18

P.M.

10/1/2009

2:18 P.M.

10/1/2009 2:18

P.M.

10/1/2009 2:20

P.M.

Frequency (Hz) 12500

Bit Rate (bps) 3125

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 42.63 33.25 31.98 34.77 33.11

2 42.63 33.35 32.13 34.81 26.56

3 42.63 33.45 32.03 34.81 27.44

4 42.63 33.50 32.13 34.86 30.08

5 42.63 33.45 32.03 34.81 30.66

6 42.63 33.40 32.28 34.81 30.18

7 42.63 33.45 32.08 34.81 32.28

8 42.63 33.45 32.18 34.81 32.52

9 42.63 33.45 32.08 34.81 32.86

10 42.63 33.45 32.18 34.81 33.74

11 42.63 33.40 32.13 34.81 34.13

12 42.63 33.40 32.18 34.81 34.57

13 42.63 33.50 32.23 34.86 34.62

14 42.63 33.50 32.32 34.81 34.08

15 42.63 33.45 32.23 34.81 34.38

16 42.63 33.45 32.28 34.81 34.77

17 42.63 33.50 32.32 34.86 34.72

18 42.63 33.45 32.32 34.81 34.47

19 42.63 33.40 32.32 34.91 33.69

20 42.63 33.59 32.52 34.86 33.40

21 42.63 33.59 32.57 34.86 32.76

22 42.63 33.59 32.62 34.86 31.88

23 42.63 33.50 32.71 34.86 31.79

24 42.63 33.54 32.62 34.81 31.79

25 42.63 33.50 32.62 34.86 32.32

26 42.63 33.45 32.71 34.86 31.05

27 42.63 33.69 32.62 35.01 32.47

28 42.63 33.59 32.76 34.91 33.74

29 42.63 33.59 32.71 34.96 35.25

30 42.63 33.59 32.86 34.91 36.04

31 42.63 33.59 32.91 34.86 36.28

32 42.63 33.69 32.91 34.96 36.91

33 42.63 33.64 32.86 34.91 37.21

34 42.63 33.69 32.67 35.01 36.87

35 42.63 33.64 32.81 34.91 36.52

36 42.63 33.59 32.91 34.91 36.08

37 42.63 33.64 32.91 34.96 35.94

38 42.63 33.79 32.86 35.06 34.47

39 42.63 33.84 32.91 35.06 35.35

209

40 42.63 33.79 33.06 35.06 34.52

41 42.63 33.69 32.96 35.01 35.06

42 42.63 33.74 32.91 34.96 34.52

43 42.63 33.84 33.06 35.06 34.62

44 42.63 33.79 33.06 35.01 34.77

45 42.63 33.74 33.01 35.06 34.62

46 42.63 33.74 33.06 34.96 34.28

47 42.63 33.89 33.15 35.06 33.45

48 42.63 33.84 33.15 35.11 33.89

49 42.63 33.89 33.20 35.06 33.25

50 42.63 33.94 33.20 35.11 32.76

Average BER 42.63 33.59 32.61 34.91 33.65

Simulated BER 40.09 31.15 28.61 32.76 0.34

% Difference 2.54 2.44 4.00 2.15 33.31

C.11 17.5 kHz, 250 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

2:24 P.M.

10/1/2009 2:24

P.M.

10/1/2009

2:24 P.M.

10/1/2009 2:24

P.M.

10/1/2009 2:28

P.M.

Frequency (Hz) 17500

Bit Rate (bps) 250

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00

13 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.00 0.00 0.00

17 0.00 0.00 0.00 0.00 0.00

18 0.00 0.00 0.00 0.00 0.00

19 0.00 0.00 0.00 0.00 0.00

20 0.00 0.00 0.00 0.00 0.00

Average BER 0.00 0.00 0.00 0.00 0.00

Simulated BER 0.00 0.00 0.00 0.00 0.00

% Difference 0.00 0.00 0.00 0.00 0.00

210

C.12 17.5 kHz, 500 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

2:34 P.M.

10/1/2009 2:34

P.M.

10/1/2009

2:34 P.M.

10/1/2009 2:34

P.M.

10/1/2009 2:39

P.M.

Frequency (Hz) 17500

Bit Rate (bps) 500

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 0.00 0.29 0.00 1.61 0.00

2 0.00 0.49 0.00 1.71 0.00

3 0.00 0.24 0.00 1.71 0.00

4 0.00 0.49 0.00 1.71 0.00

5 0.00 0.24 0.00 1.76 0.00

6 0.00 0.54 0.00 1.71 0.00

7 0.00 0.20 0.00 1.56 0.00

8 0.00 0.63 0.00 1.86 0.00

9 0.00 0.54 0.00 1.76 0.00

10 0.00 0.49 0.00 1.76 0.00

11 0.00 0.73 0.00 1.86 0.00

12 0.00 0.68 0.00 2.29 0.00

13 0.00 0.44 0.00 2.05 0.00

14 0.00 0.83 0.00 2.05 0.00

15 0.00 0.68 0.00 2.10 0.00

16 0.00 0.73 0.00 2.59 0.00

17 0.00 0.63 0.00 2.39 0.00

18 0.00 0.88 0.00 2.59 0.00

19 0.00 0.78 0.00 2.44 0.00

20 0.00 0.98 0.00 2.98 0.00

21 0.00 0.93 0.00 3.42 0.00

22 0.00 1.03 0.00 3.13 0.00

23 0.00 1.22 0.00 3.32 0.00

24 0.00 1.22 0.00 3.56 0.00

25 0.00 1.22 0.00 3.56 0.00

26 0.00 1.42 0.00 3.22 0.00

27 0.00 1.51 0.00 3.22 0.00

28 0.00 1.81 0.00 3.52 0.00

29 0.00 2.20 0.00 4.79 0.00

30 0.00 2.44 0.00 4.54 0.00

31 0.00 2.54 0.00 4.83 0.00

32 0.00 2.64 0.00 4.79 0.00

33 0.00 2.64 0.00 4.74 0.00

34 0.00 2.98 0.00 5.42 0.00

35 0.00 3.37 0.00 5.18 0.00

36 0.00 3.08 0.00 5.03 0.00

37 0.00 3.17 0.00 5.32 0.00

38 0.00 3.61 0.00 5.42 0.00

211

39 0.00 3.66 0.00 5.66 0.00

40 0.00 3.96 0.00 6.40 0.00

41 0.00 4.10 0.00 6.45 0.00

42 0.00 4.39 0.00 6.54 0.00

43 0.00 4.15 0.00 6.30 0.00

44 0.00 4.49 0.00 6.74 0.00

45 0.00 4.35 0.00 6.35 0.00

46 0.00 4.93 0.00 6.49 0.00

47 0.00 4.79 0.00 6.54 0.00

48 0.00 4.39 0.00 6.10 0.00

49 0.00 4.49 0.00 6.20 0.00

50 0.00 6.88 0.00 8.20 0.00

Average BER 0.00 2.10 0.00 3.91 0.00

Simulated BER 0.00 0.00 0.00 0.00 0.00

% Difference 0.00 2.10 0.00 3.91 0.00

C.13 17.5 kHz, 1250 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

2:43 P.M.

10/1/2009 2:43

P.M.

10/1/2009

2:43 P.M.

10/1/2009 2:43

P.M.

10/1/2009 2:46

P.M.

Frequency (Hz) 17500

Bit Rate (bps) 1250

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 24.51 20.46 23.00 19.43 0.00

2 22.51 18.41 21.78 18.26 0.00

3 22.71 18.60 22.12 18.55 0.00

4 23.00 19.19 22.27 19.34 0.00

5 24.46 20.51 22.95 19.38 0.00

6 22.51 18.55 21.88 18.41 0.00

7 22.85 18.65 22.02 18.55 0.00

8 23.00 18.99 22.27 18.99 0.00

9 22.90 19.09 22.22 19.04 0.00

10 22.66 18.85 21.97 18.75 0.00

11 22.80 18.70 22.02 18.60 0.00

12 22.90 18.90 22.17 18.90 0.00

13 22.90 18.85 22.22 18.90 0.00

14 22.80 18.75 22.12 18.70 0.00

15 22.71 18.99 22.17 18.90 0.00

16 22.95 18.95 22.22 18.99 0.00

17 22.90 19.14 22.27 19.24 0.00

18 22.95 18.90 22.17 18.95 0.00

19 22.80 18.99 22.22 19.04 0.00

20 22.90 19.09 22.31 19.14 0.00

21 23.00 18.95 22.22 19.19 0.00

22 22.95 18.85 22.22 19.09 0.00

212

23 22.95 18.85 22.12 18.95 0.00

24 22.95 18.95 22.12 19.24 0.00

25 23.00 18.80 22.22 19.09 0.00

26 22.90 18.90 22.22 19.04 0.00

27 22.95 18.99 22.17 19.19 0.00

28 23.00 19.14 22.27 19.34 0.00

29 22.95 18.95 22.27 19.29 0.00

30 22.80 19.04 22.22 19.29 0.00

31 22.90 19.34 22.31 19.58 0.00

32 23.00 19.24 22.36 19.48 0.00

33 23.00 19.14 22.36 19.43 0.00

34 22.90 19.34 22.36 19.58 0.00

35 22.95 19.29 22.31 19.53 0.00

36 23.00 19.48 22.51 19.73 0.00

37 23.00 19.48 22.46 19.68 0.00

38 22.90 19.38 22.46 19.63 0.00

39 22.95 19.38 22.41 19.63 0.00

40 23.00 19.48 22.51 19.63 0.00

41 23.00 19.73 22.51 19.78 0.00

42 22.90 19.78 22.51 19.92 0.00

43 23.00 19.68 22.56 19.78 0.00

44 22.90 19.78 22.56 19.92 0.00

45 22.90 19.68 22.51 19.78 0.00

46 22.85 19.63 22.56 19.87 0.00

47 23.00 19.78 22.51 19.73 0.00

48 22.95 19.82 22.56 19.78 0.00

49 22.95 20.02 22.56 20.17 0.00

50 23.00 20.07 22.56 20.07 0.00

Average BER 22.96 19.23 22.32 19.29 0.00

Simulated BER 43.12 46.92 37.55 43.60 0.00

% Difference 20.16 27.69 15.23 24.31 0.00

C.14 17.5 kHz, 2500 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

2:48 P.M.

10/1/2009 2:48

P.M.

10/1/2009

2:48 P.M.

10/1/2009 2:48

P.M.

10/1/2009 2:51

P.M.

Frequency (Hz) 17500

Bit Rate (bps) 2500

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 17.97 21.53 12.45 21.39 6.59

2 18.26 21.48 12.60 21.44 6.59

3 18.26 21.39 12.60 21.29 6.40

4 18.12 21.29 12.55 21.29 6.59

5 18.16 21.48 12.55 21.39 6.59

6 18.12 21.39 12.50 21.29 6.59

213

7 18.07 21.34 12.50 21.19 5.52

8 18.16 21.39 12.50 21.34 6.59

9 18.16 21.44 12.55 21.39 6.59

10 18.12 21.39 12.45 21.19 6.59

11 18.12 21.34 12.45 21.24 6.59

12 18.12 21.29 12.45 21.14 6.59

13 18.07 21.19 12.55 21.24 6.59

14 18.12 21.48 12.40 21.24 6.59

15 18.12 21.29 12.45 21.29 6.59

16 18.07 21.24 12.45 21.14 6.54

17 18.12 21.34 12.45 21.19 6.25

18 18.07 21.34 12.45 21.19 4.44

19 18.02 21.24 12.40 21.14 2.05

20 18.07 21.19 12.45 20.95 1.61

21 18.07 21.44 12.45 21.34 0.68

22 17.92 21.19 12.45 21.19 1.03

23 17.87 21.19 12.40 21.00 1.27

24 17.97 21.29 12.40 21.14 2.29

25 17.87 21.19 12.40 21.19 15.09

26 17.97 21.14 12.40 21.09 4.88

27 17.97 21.09 12.30 21.09 6.40

28 17.63 20.95 12.35 20.95 6.59

29 17.92 21.00 12.40 20.85 6.59

30 17.82 21.04 12.40 20.85 6.59

31 17.87 20.90 12.40 20.90 6.59

32 18.02 21.04 12.40 20.70 6.59

33 17.77 21.00 12.35 20.90 6.59

34 17.72 20.95 12.35 21.00 6.54

35 17.68 20.90 12.40 20.70 6.59

36 17.87 20.90 12.30 20.70 6.59

37 17.97 20.90 12.30 20.75 6.59

38 17.77 20.85 12.30 20.70 6.45

39 17.77 21.04 12.35 20.80 6.30

40 17.82 20.85 12.35 20.61 5.91

41 17.77 20.85 12.30 20.70 5.62

42 17.68 20.90 12.30 20.70 6.15

43 17.68 20.75 12.35 20.56 6.20

44 17.92 20.70 12.26 20.51 6.45

45 17.92 20.70 12.35 20.41 6.40

46 17.68 20.80 12.35 20.61 6.05

47 17.63 20.80 12.35 20.70 6.25

48 17.58 20.85 12.26 20.70 6.49

49 17.92 20.61 12.26 20.61 6.30

50 17.72 20.65 12.40 20.41 6.54

Average BER 17.94 21.11 12.41 20.99 5.94

Simulated BER 21.97 25.54 15.33 24.71 0.00

% Difference 4.03 4.43 2.92 3.72 5.94

214

C.15 17.5 kHz, 3500 bps

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK

 Amplitude

Comparator Hard Limiter Default Hard Limiter

Date/Time 10/1/2009

2:53 P.M.

10/1/2009 2:53

P.M.

10/1/2009

2:53 P.M.

10/1/2009 2:53

P.M.

10/1/2009 2:55

P.M.

Frequency (Hz) 17500

Bit Rate (bps) 2500

Packet Size (bits) 2048

Test Number BER BER BER BER BER

1 28.08 25.15 24.17 25.15 3.37

2 27.98 25.20 24.17 25.15 2.39

3 28.32 25.20 24.22 25.10 3.47

4 28.03 25.20 24.17 25.05 3.22

5 28.08 25.24 24.22 25.10 3.37

6 28.32 25.20 24.22 25.15 2.20

7 28.03 25.24 24.22 25.15 3.37

8 28.13 25.24 24.22 25.10 4.00

9 28.03 25.20 24.17 25.15 5.32

10 28.03 25.24 24.22 25.05 5.91

11 28.03 25.20 24.17 25.05 4.25

12 28.03 25.10 24.17 25.10 3.81

13 28.03 25.24 24.22 25.05 3.86

14 28.08 25.15 24.17 25.15 4.54

15 28.08 25.24 24.17 25.05 4.15

16 28.03 25.24 24.17 25.10 4.69

17 28.03 25.20 24.17 25.15 4.98

18 28.03 25.24 24.22 25.10 4.69

19 28.03 25.20 24.17 25.15 4.20

20 28.03 25.20 24.17 25.10 4.20

21 28.03 25.20 24.17 25.05 4.39

22 28.08 25.24 24.17 25.10 3.96

23 28.13 25.20 24.17 25.10 3.96

24 28.13 25.15 24.17 25.05 4.30

25 28.03 25.24 24.17 25.05 4.69

26 28.13 25.24 24.17 25.10 3.96

27 28.13 25.24 24.17 25.10 3.66

28 28.13 25.15 24.17 25.10 3.32

29 28.08 25.20 24.17 25.05 3.22

30 28.13 25.20 24.17 25.10 2.88

31 28.08 25.20 24.17 25.10 2.59

32 28.08 25.20 24.17 25.05 2.29

33 28.13 25.15 24.17 25.10 1.90

34 28.13 25.20 24.17 25.05 1.76

35 28.08 25.15 24.17 25.05 1.66

36 28.17 25.15 24.17 25.10 1.66

37 28.03 25.20 24.17 25.10 1.71

38 28.13 25.15 24.17 25.10 1.71

39 28.17 25.20 24.17 25.10 1.76

215

40 28.08 25.20 24.17 25.05 1.76

41 28.13 25.20 24.17 25.10 1.90

42 28.17 25.15 24.17 25.10 2.34

43 28.13 25.20 24.17 25.10 2.39

44 28.17 25.15 24.17 25.10 2.54

45 28.17 25.20 24.17 25.10 2.93

46 28.13 25.20 24.17 25.10 2.15

47 28.13 25.20 24.17 25.10 2.44

48 28.13 25.20 24.17 25.10 2.29

49 28.13 25.20 24.17 25.10 2.34

50 28.08 25.20 24.17 25.10 2.64

Average BER 28.10 25.20 24.18 25.10 3.22

Simulated BER 28.61 25.29 24.22 25.24 3.22

% Difference 0.51 0.09 0.04 0.15 0.00

216

Appendix D

Source Code for Chapter 4

D.1 Tunnel Relay Application

/**

 * Author: Brian Borowski

 * Date created: 04/07/2009

 * Date last modified: 04/19/2010

 * Relays datagrams from the OS arriving at the tun device to the UDP port

 * connected to the Java modem, and vice-versa.

 */

#include "util.h"

#include <arpa/inet.h>

#include <ctype.h>

#include <errno.h>

#include <fcntl.h>

#include <getopt.h>

#include <linux/if_tun.h>

#include <net/if.h>

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <string.h>

#include <sys/ioctl.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <time.h>

#include <unistd.h>

/* Globals */

int is_client, mtu, peer_port, peer_sock, sock, this_port;

short tun_number;

char *dev_ip_address, *ip_address;

struct sockaddr_in serv_addr, peer_addr;

time_t t1, t2;

/* Probe for tun interface availability. */

int probe_tun(int print_to_stderr) {

 int fd;

 if ((fd = open("/dev/net/tun", O_RDWR)) < 0) {

 if (print_to_stderr) {

 fprintf(stderr, "Error: Cannot open '/dev/net/tun'. "

 "Is the tun kernel module loaded?\n");

 }

 return -1;

 }

 close(fd);

 return 0;

}

/* Delete tun device. */

int del_dev_tun(int fd, int print_to_stderr) {

217

 if (ioctl(fd, TUNSETPERSIST, 0) < 0) {

 if (print_to_stderr) {

 fprintf(stderr, "Error: Cannot delete tun device: %s\n",

 strerror(errno));

 }

 return -1;

 }

 close(fd);

 return 0;

}

/* Allocate and configure tun device. */

int tun_alloc(int *fd,

 char *tun_dev,

 int tun_dev_size,

 int MTU,

 int print_to_stderr) {

 int tmp_fd, sock_opts;

 struct ifreq ifr_tun;

 struct sockaddr_in addr;

 /* Set up tunnel device */

 memset(&ifr_tun, 0, sizeof(ifr_tun));

 ifr_tun.ifr_flags = IFF_TUN | IFF_NO_PI;

 strncpy(ifr_tun.ifr_name, tun_dev, IFNAMSIZ);

 if ((*fd = open("/dev/net/tun", O_RDWR)) < 0) {

 if (print_to_stderr) {

 fprintf(stderr,

 "Error: Cannot create tun device '/dev/net/tun': %s\n",

 strerror(errno));

 }

 return -1;

 }

 if ((ioctl(*fd, TUNSETIFF, (void *)&ifr_tun)) < 0) {

 if (print_to_stderr) {

 fprintf(stderr,

 "Error: Cannot create tun device (TUNSETIFF): %s\n",

 strerror(errno));

 }

 close(*fd);

 return -1;

 }

 if (ioctl(*fd, TUNSETPERSIST, 1) < 0) {

 if (print_to_stderr) {

 fprintf(stderr,

 "Error: Cannot create tun device (TUNSETPERSIST): %s\n",

 strerror(errno));

 }

 close(*fd);

 return -1;

 }

 if ((tmp_fd = socket(PF_INET, SOCK_DGRAM, 0)) < 0) {

 if (print_to_stderr) {

 fprintf(stderr,

 "Error: Cannot can't create tun device (UDP socket): %s\n",

218

 strerror(errno));

 }

 del_dev_tun(*fd, 1);

 return -1;

 }

 /* Set IP of this end point of tunnel */

 memset(&addr, 0, sizeof(addr));

 addr.sin_addr.s_addr = inet_addr(dev_ip_address);

 addr.sin_family = AF_INET;

 memcpy(&ifr_tun.ifr_addr, &addr, sizeof(struct sockaddr));

 if (ioctl(tmp_fd, SIOCSIFADDR, &ifr_tun) < 0) {

 if (print_to_stderr) {

 fprintf(stderr,

 "Error: Cannot create tun device (SIOCSIFADDR): %s\n",

 strerror(errno));

 }

 del_dev_tun(*fd, 1);

 close(tmp_fd);

 return -1;

 }

 if (ioctl(tmp_fd, SIOCGIFINDEX, &ifr_tun) < 0) {

 if (print_to_stderr) {

 fprintf(stderr,

 "Error: Cannot create tun device (SIOCGIFINDEX): %s\n",

 strerror(errno));

 }

 del_dev_tun(*fd, 1);

 close(tmp_fd);

 return -1;

 }

 if (ioctl(tmp_fd, SIOCGIFFLAGS, &ifr_tun) < 0) {

 if (print_to_stderr) {

 fprintf(stderr,

 "Error: Cannot create tun device (SIOCGIFFLAGS): %s\n",

 strerror(errno));

 }

 del_dev_tun(*fd, 1);

 close(tmp_fd);

 return -1;

 }

 ifr_tun.ifr_flags |= (IFF_UP | IFF_RUNNING);

 if (ioctl(tmp_fd, SIOCSIFFLAGS, &ifr_tun) < 0) {

 if (print_to_stderr) {

 fprintf(stderr,

 "Error: Cannot create tun device (SIOCSIFFLAGS): %s\n",

 strerror(errno));

 }

 del_dev_tun(*fd, 1);

 close(tmp_fd);

 return -1;

 }

 /* Set MTU */

 ifr_tun.ifr_mtu = MTU;

219

 if (ioctl(tmp_fd, SIOCSIFMTU, &ifr_tun) < 0) {

 if (print_to_stderr) {

 fprintf(stderr,

 "Error: Cannot create tun device (SIOCGIFMTU): %s\n",

 strerror(errno));

 }

 del_dev_tun(*fd, 1);

 close(tmp_fd);

 return -1;

 }

 /* Make tun socket non blocking */

 sock_opts = fcntl(*fd, F_GETFL, 0);

 fcntl(*fd, F_SETFL, sock_opts | O_NONBLOCK);

 strncpy(tun_dev, ifr_tun.ifr_name, tun_dev_size - 1);

 close(tmp_fd);

 return 0;

}

void print_datagram(uint8_t *str, int num_bytes) {

 int index = 0, lines = 0;

 if (str) {

 if (num_bytes > 104) {

 fprintf(stderr, " ");

 }

 for (index = 0; index < 8; index++) {

 fprintf(stderr, " %2d", index);

 }

 if (num_bytes < 104) {

 fprintf(stderr, "\n%02d:", lines);

 } else {

 fprintf(stderr, "\n %02d:", lines);

 }

 for (index = 0; index < num_bytes; index++) {

 fprintf(stderr, " %02x", str[index]);

 if (isprint(str[index])) {

 fprintf(stderr, "(%c)", str[index]);

 } else {

 fprintf(stderr, "()");

 }

 if ((index + 1) % 8 == 0 && (index + 1) < num_bytes) {

 lines += 8;

 if (num_bytes <= 104 || index >= 103) {

 fprintf(stderr, "\n%02d:", lines);

 } else {

 fprintf(stderr, "\n %02d:", lines);

 }

 }

 }

 fprintf(stderr, "\n");

 }

 return;

}

void print_help(FILE *descriptor, char *executable_name) {

 fprintf(descriptor,

 "Usage: %s\n"

220

 " -d <tunnel device IP address>\n"

 " -n <tunnel number>\n"

 " -b <port of local binding>\n"

 " -i <IP address of link layer implementation>\n"

 " -p <port of link layer implementation>\n"

 " -m <MTU in bytes>\n",

 executable_name);

}

void parse_args(int argc, char *argv[]) {

 char c;

 char *dev_ip_str = NULL,

 *ip_str = NULL,

 *number_str = NULL,

 *mtu_str = NULL,

 *link_port_str = NULL,

 *local_port_str = NULL,

 *executable_name = argv[0];

 /* Do not allow getopt to display messsages automatically. */

 opterr = 0;

 /* Parse command line arguments with getopt. */

 while ((c = getopt(argc, argv, "b:d:i:m:n:p:h")) != -1) {

 switch(c) {

 case 'b':

 local_port_str = optarg;

 break;

 case 'd':

 dev_ip_str = optarg;

 break;

 case 'i':

 ip_str = optarg;

 break;

 case 'm':

 mtu_str = optarg;

 break;

 case 'n':

 number_str = optarg;

 break;

 case 'p':

 link_port_str = optarg;

 break;

 case 'h':

 print_help(stdout, executable_name);

 exit(EXIT_SUCCESS);

 case '?':

 if (isprint(optopt)) {

 fprintf(stderr, "Unknown option '-%c'.\n", optopt);

 } else {

 fprintf(stderr, "Unknown option character'\\x%x'.\n",

 optopt);

 }

 print_help(stderr, executable_name);

 exit(EXIT_FAILURE);

 }

 }

 if (number_str != NULL) {

 if (!is_integer(number_str)) {

 fprintf(stderr, "Error: Invalid tunnel number '%s'.\n",

221

 number_str);

 exit(EXIT_FAILURE);

 }

 tun_number = atoi(number_str);

 if (tun_number < 0) {

 fprintf(stderr, "Error: Tunnel number must be non-negative.\n");

 exit(EXIT_FAILURE);

 }

 } else {

 fprintf(stderr, "Error: Tunnel number not specified.\n");

 exit(EXIT_FAILURE);

 }

 if (dev_ip_str != NULL) {

 if (!is_valid_ip_addr(dev_ip_str)) {

 fprintf(stderr, "Error: Invalid device IP address '%s'.\n",

 dev_ip_str);

 exit(EXIT_FAILURE);

 }

 dev_ip_address = strdup(dev_ip_str);

 } else {

 fprintf(stderr, "Error: Device IP address not specified.\n");

 exit(EXIT_FAILURE);

 }

 if (local_port_str != NULL) {

 if (!is_integer(local_port_str)) {

 fprintf(stderr, "Error: Invalid port number '%s'.\n",

 local_port_str);

 exit(EXIT_FAILURE);

 }

 this_port = atoi(local_port_str);

 if (this_port < 1024 || this_port > 65535) {

 fprintf(stderr, "Error: Port %d not in range 1024..65535.\n",

 this_port);

 exit(EXIT_FAILURE);

 }

 } else {

 fprintf(stderr, "Error: Local port number not specified.\n");

 exit(EXIT_FAILURE);

 }

 if (ip_str != NULL) {

 if (!is_valid_ip_addr(ip_str)) {

 fprintf(stderr, "Error: Invalid IP address '%s'.\n", ip_str);

 exit(EXIT_FAILURE);

 }

 ip_address = strdup(ip_str);

 } else {

 fprintf(stderr, "Error: Link layer IP address not specified.\n");

 exit(EXIT_FAILURE);

 }

 if (link_port_str != NULL) {

 if (!is_integer(link_port_str)) {

 fprintf(stderr, "Error: Invalid port number '%s'.\n",

 link_port_str);

 exit(EXIT_FAILURE);

 }

 peer_port = atoi(link_port_str);

222

 if (peer_port < 1024 || peer_port > 65535) {

 fprintf(stderr, "Error: Port %d not in range 1024..65535.\n",

 peer_port);

 exit(EXIT_FAILURE);

 }

 } else {

 fprintf(stderr, "Error: Link layer port number not specified.\n");

 exit(EXIT_FAILURE);

 }

 if (mtu_str != NULL) {

 if (!is_integer(mtu_str)) {

 fprintf(stderr, "Error: Invalid MTU '%s'.\n", mtu_str);

 exit(EXIT_FAILURE);

 }

 mtu = atoi(mtu_str);

 if (mtu < 1) {

 fprintf(stderr, "Error: MTU must be a positive number.\n");

 exit(EXIT_FAILURE);

 }

 } else {

 fprintf(stderr, "Error: MTU not specified.\n");

 exit(EXIT_FAILURE);

 }

}

void print_params() {

 printf("Using tunnel parameters:\n");

 printf(" Tunnel # : %d\n", tun_number);

 printf(" Tunnel IP Address : %s\n", dev_ip_address);

 printf(" Local Port # : %d\n", this_port);

 printf(" MTU (bytes) : %d\n", mtu);

 printf(" Peer IP Address : %s\n", ip_address);

 printf(" Peer Port # : %d\n", peer_port);

}

void analyze_datagram(uint8_t *datagram) {

 uint8_t protocol;

 uint16_t value;

 int i;

 protocol = datagram[9];

 printf("Datagram Contents\n");

 printf(" Protocol: %d ", protocol);

 if (protocol == 6) {

 printf("(TCP)\n");

 } else if (protocol == 17) {

 printf("(UDP)\n");

 }

 printf(" Source address: ");

 for (i = 12; i <= 15; i++) {

 printf("%d", datagram[i]);

 if (i != 15) {

 printf(".");

 } else {

 printf("\n");

 }

 }

 printf(" Destination address: ");

 for (i = 16; i <= 19; i++) {

223

 printf("%d", datagram[i]);

 if (i != 19) {

 printf(".");

 } else {

 printf("\n");

 }

 }

 value = (datagram[20] << 8) | datagram[21];

 printf(" Source port: %d\n", value);

 value = (datagram[22] << 8) | datagram[23];

 printf(" Destination port: %d\n", value);

 if (protocol == 17) {

 value = (datagram[24] << 8) | datagram[25];

 printf(" Length: %d\n", value);

 value = (datagram[26] << 8) | datagram[27];

 printf(" Checksum: %d\n", value);

 } else if (protocol == 6) {

 value = (datagram[33] & 0x20) >> 5;

 printf(" URG: %d, ", value);

 value = (datagram[33] & 0x10) >> 4;

 printf("ACK: %d, ", value);

 value = (datagram[33] & 0x8) >> 3;

 printf("PSH: %d, ", value);

 value = (datagram[33] & 0x4) >> 2;

 printf("RST: %d, ", value);

 value = (datagram[33] & 0x2) >> 1;

 printf("SYN: %d, ", value);

 value = (datagram[33] & 0x1);

 printf("FIN: %d\n", value);

 }

}

void config_tun_link() {

 if ((sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) {

 perror("Error");

 exit(EXIT_FAILURE);

 }

 memset(&serv_addr, 0, sizeof(serv_addr));

 serv_addr.sin_family = AF_INET;

 serv_addr.sin_port = htons(this_port);

 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 if (bind(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {

 perror("Error");

 exit(EXIT_FAILURE);

 }

 memset(&peer_addr, 0, sizeof(peer_addr));

 peer_addr.sin_family = AF_INET;

 peer_addr.sin_port = htons(peer_port);

 peer_addr.sin_addr.s_addr = inet_addr(ip_address);

}

int main(int argc, char *argv[]) {

 char c, tun_dev[IFNAMSIZ];

 fd_set socket_set;

 int bytes_read, bytes_sent, max_fd, return_code, running, timeout, tun_fd;

 socklen_t peer_len;

 struct timeval select_timeout;

 uint8_t *buffer;

 parse_args(argc, argv);

224

 print_params();

 config_tun_link();

 sprintf(tun_dev, "tun%d", tun_number);

 timeout = 5;

 if ((return_code = probe_tun(1)) < 0) {

 return 1;

 }

 printf("Status: tun file descriptor probed successfully.\n");

 if ((return_code = tun_alloc(&tun_fd, tun_dev, IFNAMSIZ, mtu, 1)) < 0) {

 return 1;

 }

 printf("Status: '%s' allocated successfully to fd %d.\n", tun_dev, tun_fd);

 max_fd = max(max(STDIN_FILENO, tun_fd), sock);

 if ((buffer = (uint8_t*)malloc(mtu * sizeof(uint8_t))) == NULL) {

 fprintf(stderr, "Error: Cannot allocate memory for buffer.\n");

 del_dev_tun(tun_fd, 1);

 }

 printf("Starting server. Type 'q' + ENTER to quit...\n");

 running = 1;

 while (running) {

 FD_ZERO(&socket_set);

 FD_SET(STDIN_FILENO, &socket_set);

 FD_SET(tun_fd, &socket_set);

 FD_SET(sock, &socket_set);

 select_timeout.tv_sec = timeout;

 select_timeout.tv_usec = 0;

 if (select(max_fd + 1, &socket_set, NULL, NULL, NULL) == 0) {

 printf("No activity for %d seconds. Server still alive.\n",

 timeout);

 } else if (FD_ISSET(tun_fd, &socket_set)) {

 t2 = time(NULL);

 printf("Elapsed time since last datagram: %.2f seconds\n",

 difftime(t2, t1));

 t1 = t2;

 printf("Received data from %s.\n", tun_dev);

 if ((bytes_read = read(tun_fd, buffer, mtu)) < 0) {

 fprintf(stderr, "Error: Cannot read from %s: ", tun_dev);

 perror("");

 continue;

 }

 if (bytes_read > 0) {

 print_datagram(buffer, bytes_read);

 analyze_datagram(buffer);

 if ((bytes_sent = sendto(sock,

 buffer,

 bytes_read,

 0,

 (struct sockaddr *)&peer_addr,

 sizeof(peer_addr))) != bytes_read) {

 fprintf(stderr, "Error: Sent %d bytes instead of %d.\n",

 bytes_sent, bytes_read);

 } else {

 fprintf(stderr, "Status: Sent %d bytes.\n", bytes_sent);

 }

 }

225

 } else if (FD_ISSET(sock, &socket_set)) {

 printf("Received data from UDP socket.\n");

 peer_len = sizeof(peer_addr);

 if ((bytes_read = recvfrom(sock,

 buffer,

 mtu,

 0,

 (struct sockaddr *)&peer_addr,

 &peer_len)) < 0) {

 fprintf(stderr, "Error: Cannot read from UDP socket: ");

 perror("");

 continue;

 }

 if (bytes_read > 0) {

 printf("Handling connection with %s.\n",

 inet_ntoa(peer_addr.sin_addr));

 print_datagram(buffer, bytes_read);

 analyze_datagram(buffer);

 if ((bytes_sent = write(tun_fd,

 buffer,

 bytes_read)) != bytes_read) {

 fprintf(stderr, "Error: Sent %d bytes instead of %d.\n",

 bytes_sent, bytes_read);

 } else {

 fprintf(stderr, "Status: Sent %d bytes.\n", bytes_sent);

 }

 }

 } else if (FD_ISSET(STDIN_FILENO, &socket_set)) {

 c = getchar();

 if (c == 'q') {

 printf("Shutting down server.\n");

 running = 0;

 }

 }

 }

 del_dev_tun(tun_fd, 1);

 free(buffer);

 return 0;

}

D.2 util.h for Tunnel Relay Application

#ifndef UTIL_H_

#define UTIL_H_

/**

 * Definitions

 */

#define ERR_TOO_MANY_DOTS -1

#define ERR_TOO_FEW_DOTS -2

#define ERR_OCTET_TOO_LONG -4

#define ERR_OCTET_OUT_OF_RANGE -8

#define ERR_OCTET_NOT_INTEGER -16

#define max(A, B) ((A) > (B) ? (A) : (B))

/**

 * Function prototypes

226

 */

int is_valid_ip_addr(char *ipAddressPtr);

int is_integer(char *inputPtr);

#endif

D.3 util.c for Tunnel Relay Application

#include "util.h"

#include <ctype.h>

#include <stdlib.h>

#include <string.h>

/**

 * Returns 0 if the character array represents a valid IPv4 address; otherwise,

 * returns a non-negative error code.

 */

int is_valid_ip_addr(char *ipAddressPtr) {

 unsigned char dotPositions[4];

 char buffer[3];

 unsigned int j;

 int octet;

 int length;

 int i, k;

 int index;

 length = strlen(ipAddressPtr);

 index = 0;

 for (i = 0; i < length; i++) {

 if (ipAddressPtr[i] == '.') {

 if (index < 3) {

 dotPositions[index++] = i;

 } else {

 return ERR_TOO_MANY_DOTS;

 }

 }

 }

 if (index < 3) {

 return ERR_TOO_FEW_DOTS;

 }

 dotPositions[3] = length;

 index = 0;

 for (i = 0; i < 4; i++) {

 k = 0;

 for (j = index; j < dotPositions[i]; j++) {

 if (k < 3) {

 buffer[k++] = ipAddressPtr[j];

 } else {

 return ERR_OCTET_TOO_LONG;

 }

 }

 buffer[k] = '\0';

 index = j + 1;

 if (strlen(buffer) == 1 && buffer[0] == '0') {

 continue;

 }

 if (is_integer(buffer)) {

227

 octet = atoi(buffer);

 if (octet <= 0 || octet > 255) {

 return ERR_OCTET_OUT_OF_RANGE;

 }

 } else {

 return ERR_OCTET_NOT_INTEGER;

 }

 }

 return 1;

}

/**

 * Determines whether or not a character array represents an integer.

 */

int is_integer(char *inputPtr) {

 int start, i;

 if (inputPtr[0] == '-') {

 if (inputPtr[1] == '\0') {

 return 0;

 } else {

 start = 1;

 }

 } else {

 start = 0;

 }

 for (i = start; inputPtr[i] != '\0'; i++) {

 if (!isdigit(inputPtr[i])) {

 return 0;

 }

 }

 return 1;

}

D.4 SignalProcessor.java for Softwater Modem

/**

 * Author: Brian Borowski

 * Date created: 06/23/2009

 * Date last modified: 06/23/2009

 * Computes FFT, cross-correlation, convolution, and rms amplitude.

 * Based on W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

 * Numerical Recipes: The Art of Scientific Computing, Third Edition,

 * Cambridge University Press: Cambridge, 2007.

 */

public final class SignalProcessor {

 public static int IFFT = -1, FFT = 1, DECONVOLVE = -1, CONVOLVE = 1;

 private float[] ans, temp;

 private int fftPoints;

 public SignalProcessor(int length1, int length2) {

 int max = Math.max(length1, length2),

 upperBound = (max << 1) - 1;

 fftPoints = 2;

 while (fftPoints <= upperBound) {

 fftPoints <<= 1;

228

 }

 ans = new float[fftPoints];

 temp = new float[fftPoints];

 }

 public static void realft(float[] data, int n, int isign) {

 int i, i1, i2, i3, i4, np3;

 float c1 = 0.5f, c2, h1r, h1i, h2r, h2i;

 double wr, wi, wpr, wpi, wtemp, theta;

 theta = 3.141592653589793 / (double)(n >> 1);

 if (isign == FFT) {

 c2 = -0.5f;

 four1(data, n >> 1, 1);

 } else {

 c2 = 0.5f;

 theta = -theta;

 }

 wtemp = Math.sin(0.5 * theta);

 wpr = -2.0 * wtemp * wtemp;

 wpi = Math.sin(theta);

 wr = 1.0 + wpr;

 wi = wpi;

 np3 = n + 3;

 int upperBound = n >> 2;

 for (i = 2; i <= upperBound; i++) {

 i2 = 1 + (i1 = i + i);

 i4 = 1 + (i3 = n - i1);

 h1r = c1 * (data[i1] + data[i3]);

 h1i = c1 * (data[i2] - data[i4]);

 h2r = -c2 * (data[i2] + data[i4]);

 h2i = c2 * (data[i1] - data[i3]);

 data[i1] = (float)(h1r + wr * h2r - wi * h2i);

 data[i2] = (float)(h1i + wr * h2i + wi * h2r);

 data[i3] = (float)(h1r - wr * h2r + wi * h2i);

 data[i4] = (float)(-h1i + wr * h2i + wi * h2r);

 wr = (wtemp = wr) * wpr - wi * wpi + wr;

 wi = wi * wpr + wtemp * wpi + wi;

 }

 if (isign == FFT) {

 data[0] = (h1r = data[0]) + data[1];

 data[1] = h1r - data[1];

 } else {

 data[0] = c1 * ((h1r = data[0]) + data[1]);

 data[1] = c1 * (h1r - data[1]);

 four1(data, n >> 1, -1);

 }

 }

 public float[] crossCorrelate(float[] d1, float[] d2) {

 int no2, i,

 len1 = d1.length,

 len2 = d2.length,

 n = fftPoints;

 // Make copies of the data so that the original samples remain

 // preserved.

 System.arraycopy(d1, 0, ans, 0, len1);

 System.arraycopy(d2, 0, temp, 0, len2);

 // Pad with zeros.

229

 for (i = len1; i < n; i++) {

 ans[i] = 0.0f;

 }

 for (i = len2; i < n; i++) {

 temp[i] = 0.0f;

 }

 realft(ans, n, FFT);

 realft(temp, n, FFT);

 no2 = n >> 1;

 for (i = 2; i < n; i+=2) {

 int iPlusOne = i + 1;

 float ansIPlusOne = ans[iPlusOne],

 ansI = ans[i],

 tempIPlusOne = temp[iPlusOne],

 tempI = temp[i];

 ans[i] = (ansI * tempI + ansIPlusOne * tempIPlusOne) / no2;

 ans[iPlusOne] = (ansIPlusOne * tempI - ansI * tempIPlusOne) / no2;

 }

 ans[0] = ans[0] * temp[0]/no2;

 ans[1] = ans[1] * temp[1]/no2;

 realft(ans, n, IFFT);

 return ans;

 }

 public float[] convolve(float[] data, float[] response, int isign) {

 int no2, i,

 len1 = data.length,

 len2 = response.length,

 n = fftPoints;

 float val, max = 0.0f;

 short maxShort = Short.MAX_VALUE;

 // Make copies of the data so that the original samples remain

 // preserved.

 System.arraycopy(data, 0, ans, 0, len1);

 System.arraycopy(response, 0, temp, 0, len2);

 // Pad with zeros.

 for (i = len1; i < n; i++) {

 ans[i] = 0.0f;

 }

 for (i = len2; i < n; i++) {

 temp[i] = 0.0f;

 }

 realft(ans, n, FFT);

 realft(temp, n, FFT);

 no2 = n >> 1;

 if (isign == CONVOLVE) {

 for (i = 2; i < n; i+=2) {

 int iPlusOne = i + 1;

 float ansIPlusOne = ans[iPlusOne],

 ansI = ans[i],

 tempIPlusOne = temp[iPlusOne],

 tempI = temp[i];

 ans[i] = (ansI * tempI - ansIPlusOne * tempIPlusOne) / no2;

 ans[iPlusOne] =

 (ansIPlusOne * tempI + ansI * tempIPlusOne) / no2;

 }

 ans[0] = ans[0] * temp[0]/no2;

 ans[1] = ans[1] * temp[1]/no2;

 } else if (isign == DECONVOLVE) {

230

 // TODO - but not needed in project

 } else {

 return null;

 }

 realft(ans, n, IFFT);

 for (i = n - 1; i >= 0; i--) {

 val = ans[i];

 val = val > 0 ? val : -val;

 if (val > max) {

 max = val;

 }

 }

 for (i = n - 1; i >= 0; i--) {

 ans[i] = ans[i] / max * maxShort;

 }

 return ans;

 }

 public static float computeRmsAmplitude(short[] samples,

 int offset,

 int howMany) {

 long rms = 0;

 int upperBound = offset + howMany;

 for (int i = offset; i < upperBound; i++) {

 short val = samples[i];

 rms += (val * val);

 }

 return (float)Math.sqrt((float)rms / howMany);

 }

 public static float indexToFrequency(int numSamples,

 int index,

 int samplingRate) {

 if (index >= numSamples) return 0.0f;

 if (index <= numSamples/2) {

 return (float)index * samplingRate / (float)numSamples;

 }

 return (float)-(numSamples - index * samplingRate) / (float)numSamples;

 }

 private static void four1(float[] data, int n, int isign) {

 int nn, mmax, m, j, istep, i;

 double wtemp, wr, wpr, wpi, wi, theta;

 float tempr, tempi;

 if (n < 2 || (n & (n-1)) != 0) {

 return;

 }

 nn = n << 1;

 j = 1;

 for (i = 1; i < nn; i+=2) {

 if (j > i) {

 int jMinusOne = j - 1,

 iMinusOne = i - 1;

 tempr = data[jMinusOne];

 data[jMinusOne] = data[iMinusOne];

 data[iMinusOne] = tempr;

 tempr = data[j];

 data[j] = data[i];

 data[i] = tempr;

231

 }

 m = n;

 while (m >= 2 && j > m) {

 j -= m;

 m >>= 1;

 }

 j += m;

 }

 mmax = 2;

 while (nn > mmax) {

 istep = mmax << 1;

 theta = isign * (6.28318530717959 / mmax);

 wtemp = Math.sin(0.5 * theta);

 wpr = -2.0 * wtemp * wtemp;

 wpi = Math.sin(theta);

 wr = 1.0;

 wi = 0.0;

 for (m = 1; m < mmax; m+=2) {

 for (i = m; i <= nn; i+=istep) {

 j = i + mmax;

 int jMinusOne = j - 1,

 iMinusOne = i - 1;

 float dataJMinusOne = data[jMinusOne],

 dataJ = data[j];

 tempr = (float)(wr * dataJMinusOne - wi * dataJ);

 tempi = (float)(wr * dataJ + wi * dataJMinusOne);

 data[jMinusOne] = data[iMinusOne] - tempr;

 data[j] = data[i] - tempi;

 data[iMinusOne] += tempr;

 data[i] += tempi;

 }

 wr = (wtemp=wr) * wpr - wi * wpi + wr;

 wi = wi * wpr + wtemp * wpi + wi;

 }

 mmax = istep;

 }

 }

}

D.5 LevinsonDurbin.java for Softwater Modem

/**

 * Author: Brian Borowski

 * Date created: 06/26/2009

 * Date last modified: 06/26/2009

 * Inverts an impulse response in the time domain.

 * Java port based on 'http://www.musicdsp.org/showone.php?id=188'

 * Original author: Bob Cain, May 1, 2001 arcane[AT]arcanemethods[DOT]com

 */

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.Vector;

232

public final class LevinsonDurbin {

 private final float[] b, hinv, m, samples;

 private final float[][] a;

 private final int length;

 private final SignalProcessor signalProcesor;

 public LevinsonDurbin(final int length) {

 this.length = length;

 final int numberOfSamples = length << 1;

 samples = new float[numberOfSamples];

 b = new float[length];

 m = new float[length];

 hinv = new float[length];

 a = new float[length + 1][2];

 signalProcesor = new SignalProcessor(numberOfSamples, numberOfSamples);

 }

 public float[] getInverse(final float[] impulseResponse, final int delay) {

 for (int i = length - 1; i >= 0; --i) {

 samples[i] = impulseResponse[i];

 }

 final int upperBound = length << 1;

 for (int i = length; i < upperBound; ++i) {

 samples[i] = 0.0f;

 }

 final float[] corr = signalProcesor.crossCorrelate(samples, samples);

 for (int i = length - 1; i >= 0; --i) {

 m[i] = corr[i];

 }

 for (int i = delay; i >= 0; --i) {

 b[i] = samples[i];

 }

 for (int i = delay + 1; i < length; ++i) {

 b[i] = 0;

 }

 return solveToeplitz(m, b);

 }

 private float[] solveToeplitz(final float[] r, final float[] q) {

 final int n = length;

 for (int row = n; row >= 0; --row) {

 for (int col = 1; col >= 0; --col) {

 a[row][col] = 0.0f;

 }

 }

 for (int row = n - 1; row >= 0; --row) {

 hinv[row] = 0.0f;

 }

 a[0][0] = 1.0f;

 hinv[0] = q[0]/r[0];

 float alpha = r[0];

 int c = 0,

 d = 1;

 for (int k = 1; k < n; ++k) {

 a[k][c] = 0;

 a[0][d] = 1.0f;

233

 float beta = 0.0f;

 for (int j = 1; j <= k; ++j) {

 beta += r[k+1-j]*a[j-1][c];

 }

 beta /= alpha;

 for (int j = 1; j <= k; ++j) {

 a[j][d] = a[j][c] - beta*a[k-j][c];

 }

 alpha *= (1 - beta*beta);

 hinv[k] = q[k];

 for (int j = 1; j <= k; ++j) {

 hinv[k] -= r[k+1-j]*hinv[j-1];

 }

 hinv[k] /= alpha;

 for (int j = 1; j <= k; ++j) {

 hinv[j-1] += a[k+1-j][d]*hinv[k];

 }

 int temp = c;

 c = d;

 d = temp;

 }

 return hinv;

 }

 public static void main(String[] args) {

 if (args.length != 2) {

 System.err.println(

 "Usage: java LevinsonDurbin <input file> <output file>");

 System.exit(1);

 }

 Vector<Float> v = new Vector<Float>();

 String infile = args[0],

 outfile = args[1];

 BufferedReader in = null;

 String str = null;

 int line = 1;

 try {

 in = new BufferedReader(new FileReader(infile));

 while ((str = in.readLine()) != null) {

 v.add(new Float(str));

 line++;

 }

 } catch (NumberFormatException nfe) {

 System.err.println(

 "LevinsonDurbin: Invalid float '" + str + "' at line "

 + line + ".");

 System.exit(1);

 } catch (FileNotFoundException fnfe) {

 System.err.println(

 "LevinsonDurbin: File '" + infile + "' not found.");

 System.exit(1);

 } catch (IOException ioe) {

 System.err.println(

 "LevinsonDurbin: Error reading file '" + infile + "'.");

 System.exit(1);

 } finally {

 try {

 if (in != null) {

 in.close();

 }

234

 } catch (IOException ioe) { }

 }

 int length = v.size();

 float[] data = new float[length << 1];

 for (int i = 0; i < length; i++) {

 data[i] = v.elementAt(i);

 }

 LevinsonDurbin levinsonDurbin = new LevinsonDurbin(length);

 long startTime = System.currentTimeMillis(), currentTime;

 float[] inverseIR = levinsonDurbin.getInverse(data, 0);

 currentTime = System.currentTimeMillis();

 System.out.println(

 "Computation time: " + (currentTime - startTime)/1000.0f + " s");

 BufferedWriter out = null;

 try {

 out = new BufferedWriter(new FileWriter(outfile));

 for (int i = 0; i < length; i++) {

 out.append(Float.toString(inverseIR[i]));

 out.newLine();

 }

 } catch (IOException ioe) {

 System.err.println(

 "LevinsonDurbin: Error writing '" + outfile + "'.");

 } finally {

 try {

 if (out != null) {

 out.close();

 }

 } catch (IOException ioe) { }

 }

 }

}

235

References

[Aik 2006] T. B. Aik, Q. S. Sen, Z. Nan, “Characterization of Multipath Acoustic

Channels in Very Shallow Waters for Communications,” in Proc.

OCEANS 2006, pp. 1–8, Singapore, 2006.

[Akyildiz 2005] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater Acoustic Sensor

Networks: Research Challenges,” Ad Hoc Networks (Elsevier),

3(3):257–279, May 2005.

[Akyildiz 2006] I. F. Akyildiz, D. Pompili, and T. Melodia, “State-of-the-Art in Protocol

Research for Underwater Acoustic Sensor Networks,” in Proc. WUW-

Net‟06, 2006.

[Al-Shamma'a 2004] A. I. Al-Shamma'a, A. Shaw., and S Saman, “Propagation of Electro-

magnetic Waves at MHz Frequencies through Seawater,” IEEE Transac-

tions on Antennas and Propagation, vol. 52, pp. 2843–2849, 2004.

[Aqua-Sim 2010] Aqua-Sim, Accessed online:

http://ubinet.engr.uconn.edu/mediawiki/index.php/Aqua-Sim, Mar. 2010.

[Au 1998] W. W. L. Au and K. Banks, “The Acoustics of the Snapping Shrimp

Synalpheus Parneomeris in Kaneohe Bay,” Journal of the Acoustical So-

ciety of America 103(1), pp. 41–47, 1998.

[BELLHOP 2010] BELLHOP ray tracing program, Accessed online:

http://oalib.hlsresearch.com/Rays/index.html. Last updated Feb. 12,

2010.

[Bello 1963] P. Bello, “Characterization of randomly time-invariant channels,” IEEE

Trans. Commun. Syst., Vol. CS-11, pp. 361–393, Dec. 1963.

[Benthos 2010] Benthos, “Acoustic telesonar modems, transducers, surface, undersea –

Topside options.” Accessed online: http://www.benthos.com/acoustic-

telesonar-modem-product-comparison.asp, Mar. 2010.

[Bhattacharyya 1943] A. Bhattacharyya, “On a measure of divergence between two statistical

populations defined by their probability distributions,” Bulletin of the

Calcutta Mathematical Society, Vol. 35, pp. 99–109, 1943.

[Borowski 2008] B. Borowski, A. Sutin, H.-S. Roh, and B. Bunin, “Passive Acoustic

Threat Detection in Estuarine Environments,” in Proc. of SPIE Vol.

6945, Mar. 2008.

236

[Borowski 2009] B. Borowski and D. Duchamp, “Short Paper: The Softwater Modem - A

Software Modem for Underwater Acoustic Communication,” in Proc.

WUWNet‟09, 2009.

[Brekhovskikh 2003] L. M. Brekhovskikh and Y. P. Lysanov, Fundamentals of Ocean Acous-

tics, Third Edition, Springer, 2003.

[Butler 1987] L. Butler, “Underwater Radio Communication,” Amateur Radio, Apr.

1987. Published online: http://www.qsl.net/vk5br/UwaterComms.htm.

[Cella 2009] U. M. Cella, R. Johnstone, N. Shuley, “Electromagnetic Wave Wireless

Communication in Shallow Water Coastal Environment: Theoretical

Analysis and Experimental Results,” in Proc. WUWNet‟09, 2009.

[Chitre 2004] M. Chitre, J. Potter, and O. S. Heng, “Underwater Acoustic Channel

Characterization for Medium-Range Shallow Water Communications,”

in Proc. OCEANS 2004, Vol. 1, pp. 40–45, Nov. 2004.

[Chitre 2008] M. Chitre, S. Shahabudeen, L. Freitag, and M. Stojanovic, “Recent Ad-

vances in Underwater Acoustic Communications & Networking,” in

Proc. MTS/IEEE OCEANS 2008, Quebec City, Canada, Sept. 2008.

[Coates 1989] R. Coates, Underwater Acoustic Systems, New York: Wiley, 1989.

[Comaniciu 2003] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-Based Object Track-

ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 25, No. 5, pp. 564–577, May 2003.

[Cook 1998] G. Cook and A. Zaknich, “Chirp Sounding the Shallow Water Acoustic

Channel,” in Proc. of the IEEE International Conference on Acoustics,

Speech and Signal Processing, Vol. 4, pp. 2521–2524, Seattle, WA, May

1998.

[Dessalermos 2005] S. Dessalermos, “Undersea Acoustic Propagation Channel Estimation,”

Master's Thesis, Naval Postgraduate School, Monterey, CA, 2005.

[Diamant 2005] R. Diamant and L. Chorev, “Emulation System for Underwater Acoustic

Channel,” UDT Europe convention, Jun. 2005.

[DSPComm 2010] DSPComm, “AquaComm: Underwater wireless modem,” Accessed on-

line: http://www.dspcomm.com/products_aquacomm.html, Apr. 2010.

[Ettus 2010] Ettus Research LLC, “Downloads”, Accessed online:

http://www.ettus.com/download, Apr. 2010.

[FFTW 2010] FFTW, “Fastest Fourier Transform in the West,” Accessed online:

http://www.fftw.org/, Apr. 2010.

237

[Freitag 2005] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball, “The

WHOI Micro-Modem: An Acoustic Communications and Navigation

System for Multiple Platforms,” Proc. IEEE/MTS OCEANS Conf. Ex-

hib., Washington, D.C., Sept. 2005.

[Freitag 2009] L. Freitag and S. Singh, “Performance of Micro-Modem PSK Signaling

Under Variable Conditions during the 2008 RACE and SPACE Experi-

ments,” in Proc. IEEE OCEANS 2009, Biloxi, Oct. 2009.

[Fu 2006] T. Fu, D. Doonan, C. Utley, R. Iltis, R. Kastner, and H. Lee, “Design and

Development of a Software-Defined Underwater Acoustic Modem for

Sensor Networks for Environmental and Ecological Research,” in Proc.

OCEANS 2006, Sept. 2006.

[FuNLab 2010] NS2 UAN Simulator, Accessed online:

http://ee.washington.edu/research/funlab/uan/uansim.html, Mar. 2010.

[GEBCO 2010] The General Bathymetric Chart of the Oceans, Accessed online:

http://www.gebco.net, Mar. 2010.

[GNU 2010] GNU Radio: the gnu software radio, Accessed online

http://gnuradio.org/redmine/wiki/gnuradio, Feb. 2010.

[Goldsmith 2005] A. Goldsmith, Wireless Communications, Cambridge University Press:

Cambridge, 2005.

[Grund 2006] M. Grund, L. Freitag, J. Preisig, K. Ball, “The PLUSNet Underwater

Communications System: Acoustic Telemetry for Undersea Surveil-

lance,” in Proc. OCEANS 2006, pp. 1–5, Sept. 2006.

[Guerra 2009] F. Guerra, P. Casari, and M. Zorzi, “World Ocean Simulation System

(WOSS): A Simulation Tool for Underwater Networks,” in Proc.

WUWNet‟09, Nov. 2009.

[GulfBase 2008] GulfBase, “South Florida Ocean Measurement Center (SFOMC),” Ac-

cessed online:

http://www.gulfbase.org/organization/view.php?oid=sfomc, Oct. 2008.

[Hanson 2008] F. Hanson and S. Radic, “High Bandwidth Underwater Optical Commu-

nication,” Applied Optics, Vol. 47, No. 2, Jan. 2008.

[Harris 2007] A. F. Harris III and M. Zorzi, “Modeling the Underwater Acoustic

Channel in ns2,” NSTools ‟07, Nantes, France, Oct. 2007.

238

[Hwang 2003] J.-K. Hwang, “Innovative communication design lab based on PC sound

card and Matlab: a software-defined-radio OFDM modem example,” in

Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Vol.

3, pp. 761–4, Apr. 2003.

[ITC 2010] International Transducer Corp ITC-6050C Preamplified Hydrophone

Specifications, Accessed online: http://www.itc-

transducers.com/itc_page.asp?productID=29, Jan. 2010.

[Jacobsen 2008] E. Jacobsen, “Re: Reed-Solomon error correction capacity, 2008-11-07”,

DSPRelated.com, Accessed online:

http://www.dsprelated.com/showmessage/105082/1.php, Nov. 2008.

[Jakes 1975] W. C. Jakes (ed.), Microwave Mobile Communications. John Wiley &

Sons: New York, 1975.

[Jones 1963] J. Jones, “Hard-Limiting of Two Signals in Random Noise,” IEEE Trans.

on Information Theory, Vol. 9, Iss. 1, pp. 34–42, Jan. 1963.

[JRat 2010] JRat, The Java Runtime Analysis Toolkit. Accessed online:

http://jrat.sourceforge.net/, Apr. 2010.

[Kang 2009] T. Kang, H. Song, and W. S. Hodgkiss, “OFDM Underwater Acoustic

Communications in KAM08,” in Proc. WUWNet‟09, Nov. 2009.

[Kärkkäinen 2007] K. Kärkkäinen. Phase Optimized PN Code Sets for Numerical Analysis

and Simulation of DS-CDMA Systems, Accessed online:

http://www.ee.oulu.fi/~kk/optim_codes_info.html. Last updated Jan. 17,

2007.

[Kim 2009] S.-M. Kim, S.-H. Byun, S.-G. Kim, and Y.-K. Lim, “Experimental Anal-

ysis of Stastical Properties of Underwater Channel in a Very Shallow

Water Using Narrow and Broadband Signals,” in Proc. IEEE Oceans

2009, Biloxi, Oct. 2009.

[Krasnyansky 2010] M. Krasnyansky, “Universal TUN/TAP Driver,” Accessed online:

http://vtun.sourceforge.net/tun/, Apr. 2010.

[Kullback 1951] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The

Annals of Mathematical Statistics, Vol. 22, No. 1, pp.79–86, 1951.

[LinkQuest 2010] LinkQuest, “Underwater Acoustic Modem Models,” Accessed online:

http://www.link-quest.com/html/uwm_hr.pdf, Apr. 2010.

[Linnartz 2009] Jean-Paul M.G. Linnartz (ed.), “Comparing Rician and Nakagami Fad-

ing,” Wireless Communication Reference Website, Accessed online:

239

http://www.wirelesscommunication.nl/reference/chaptr03/ricenaka/ricen

aka.htm, 2009.

[Linnartz 2009a] Jean-Paul M.G. Linnartz (ed.), “Rician fading,” Wireless Communica-

tion Reference Website, Accessed online:

http://www.wirelesscommunication.nl/reference/chaptr03/ricepdf/rice.ht

m, 2009.

[Loubet 1993] G. Loubet and G. Jourdain, “Characterization of the Underwater Medium

as an Acoustical Horizontal Transmission Channel,” in Proc. of the IEEE

International Conference on Acoustics, Speech and Signal Processing,

Vol. 1, pp. 329–332, Apr. 1993.

[Marrow 2002] R. Marrow, Bluetooth Operation and Use, McGraw-Hill Professional,

2002.

[Michalopoulou 2001] Z. Michalopoulou, “Estimating the Impulse Response of the Ocean: Cor-

relation versus Deconvolution,” Inverse Problems in Underwater Acous-

tics, Chapter 5, Springer, 2001.

[Miller 2009] P. Miller, “Paul‟s Softrock GNU Radio Experiments, 2009-02-15,” Ac-

cessed online: http://voltar.org/gnuradio/, Feb. 2009.

[MIRACLE 2010] NS-MIRACLE: Multi-InteRfAce Cross-Layer Extension library for the

Network Simulator, Accessed online:

http://telecom.dei.unipd.it/pages/read/58, Mar. 2010.

[Munk 1974] W. H. Munk, “Sound channel in an exponentially stratified ocean with

applications to SOFAR,” Journal of the Acoustical Society of America

55, pp. 220–226, 1974.

[Nakagami 1960] M. Nakagami, “The m-Distribution – A General Formula of Intensity

Distribution of Rapid Fading,” in W. C. Hoffman (ed.): Statistical Me-

thods in Radio Wave Propagation, Pergamon Press: New York, 1960,

pp. 3–36.

[NATO 2008] NATO, “Reconnaissance, Surveillance & Undersea Networks (RSN),”

Accessed online: http://www.nurc.nato.int/research/rsn.htm, Oct. 2008.

[NGDC 2010] National Geophysical Data Center: Seafloor Surficial Sediment Descrip-

tions, Accessed online:

http://www.ngdc.noaa.gov/mgg/geology/deck41.html, Mar. 2010.

[NI 2010a] National Instruments PCI-6123 DAQ Specifications, Accessed online:

http://sine.ni.com/nips/cds/view/p/lang/en/nid/201938, Jan. 2010.

240

[NI 2010b] National Instruments USB-6221 DAQ Specifications, Accessed online:

http://sine.ni.com/nips/cds/view/p/lang/en/nid/203093, Jan. 2010.

[NI 2010c] National Instruments, “Characteristics of Different Smoothing Win-

dows,” Accessed online: http://zone.ni.com/reference/en-

XX/help/371361E-01/lvanlsconcepts/char_smoothing_windows, Feb.

2010.

[NPS 2008] Naval Postgraduate School, “Seaweb Port Surveillance,” Accessed on-

line: www.nps.edu/Research/mdsr/Docs/Seaweb2008trials.ppt, Oct.

2008.

[NS2 2010] The Network Simulator – ns-2, Accessed online:

http://nsnam.isi.edu/nsnam/index.php/User_Information, Mar. 2010.

[NYHOPS 2009] Urban Ocean Observatory at the Center for Maritime Systems, “NY-

HOPS Present Conditions Time Series and Downloads,” Accessed on-

line: http://hudson.dl.stevens-tech.edu/maritimeforecast/

PRESENT/data.shtml, Aug. 2009.

[OCEANEARS 2010] OCEANEARS – The World's Premier Online Source for high quality,

hi-fidelity synchronised swimming sound systems! Accessed online:

http://www.oceanears.com, Jan. 2010.

[Olds 2008] J. Olds, “J-QAM: A QAM soundcard modem,” Accessed online:

http://homepages.paradise.net.nz/peterfr2/QAM.htm, Apr. 2010.

[OMNeT 2010] OMNeT++ Community Site,

Accessed online: http://www.omnetpp.org, Mar. 2010.

[OPNET 2010] Application and Network Performance with OPNET,

 Accessed online: http://www.opnet.com/, Mar. 2010.

[Parrish 2007] N. Parrish, S. Roy, W. L. J. Fox, and P. Arabshahi, “Rate-Range for an

FH-FSK Acoustic Modem,” in Proc. WUWNet‟07, Sept. 2007.

[Partan 2006] J. Partan, J. Kurose, and B. N. Levine, “A Survey of Practical Issues in

Underwater Networks,” in Proc. WUWNet‟06, 2006.

[Pati 1993] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal Matching

Pursuit: Recursive Function Approximation with Applications to Wave-

let Decomposition,” in Proc. 27th Asilomar Conference on Signals, Sys-

tems and Computers, A. Singh, ed., IEEE Comput. Soc. Press, Los Ala-

mitos, CA, 1993.

http://www.nps.edu/Research/mdsr/Docs/Seaweb2008trials.ppt

241

[Pelekanakis 2003] C. Pelekanakis, M. Stojanovic, and L. Freitag, “High Rate Acoustic Link

for Underwater Video Transmission,” in Proc. OCEANS 2003, Vol. 2,

pp. 1091–1097, Sept. 2003.

[Porter 1994] M. B. Porter and Y. C. Liu, “Finite-Element Ray Tracing,” Theorertical

and Computational Acoustics – Volume 2, D. Lee and M. H. Schultz

(ed.), pp. 947–956, World Scientific, 1994.

[Preisig 2006] J. Preisig, “Acoustic Propagation Consideration for Underwater Acoustic

Communications Network Development,” in Proc. WUWNet‟06, 2006.

[Preisig 2009] J. Preisig, personal communication at WUWNet‟09, Nov. 3, 2009.

[Press 2007] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-

merical Recipes: The Art of Scientific Computing, Third Edition, Cam-

bridge University Press: Cambridge, 2007.

[Proakis 2007] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Prin-

ciples, Algorithms, and Application, Fourth Edition, Pearson: Upper

Saddle River, 2007.

[Proakis 2008] J. G. Proakis and M. Salehi, Digital Communications, Fifth Edition,

McGraw-Hill: Boston, 2008.

[Rappaport 2002] T. S. Rappaport, Wireless Communications: Principles and Practice,

Second Edition, Prentice Hall PTR: Upper Saddle River, 2002.

[Riad 1986] S. M. Riad, “The Deconvolution Problem: An Overview,” in Proc. of the

IEEE, Vol. 74, Issue 1, pp. 82–85, 1986.

[Rice 1944] S. O. Rice, “Mathematical analysis of random noise,” Bell Systems

Technical Journal, Vol. 23, pp. 282–332, 1944.

[Rice 1945] S. O. Rice, “Mathematical analysis of random noise-- conclusion,” Bell

Systems Technical Journal, Vol. 24, pp. 46–156, 1945.

[Rice 2001] J. A. Rice, R. K. Crebei, C. L. Fletcher, P. A. Baxley, D. Davison, and K.

E. Rogers, “Seaweb Underwater Acoustic Nets,” SSC San Diego Bienni-

al Review 2001, SSC San Diego Technical Document TD 3117, pp. 234–

250, Aug. 2001.

[Rice 2008] J. A. Rice, “Seaweb Network for FRONT Oceanographic Sensors,”

FY02 Annual Project Report – National Oceanographic Partnership Pro-

gram, Accessed online: www.coreocean.org/nopp/project-

reports/reports/02rice.pdf, Oct. 2008.

242

[Rodríguez 2008] O. C. Rodríguez, “General description of the BELLHOP ray tracing pro-

gram, Version 1.0, Jun. 13, 2008,” Accessed online:

http://oalib.hlsresearch.com/Rays/GeneralDescription.pdf, Mar. 2010.

[Roh 2008] H.-S. Roh, A. Sutin, and B. Bunin, “Determination of acoustic attenua-

tion in the Hudson River Estuary by means of ship noise observations,”

JASA Express Letters, May 2008.

[Sailer 2000] T. Sailer, “Soundmodem on Modern Operating Systems (2000),” Ac-

cessed online:

http://www.baycom.org/~tom/ham/dcc2000/soundmodem.pdf, Feb.

2010.

[Schill 2004] F. Schill, U.R. Zimmer, and J. Trumpf, “Visible Optical Communication

and Distance Sensing for Underwater Applications,” in Proc. Australian

Conference Robotics and Automaton Association, 2004.

[Schomer 1972] P. D. Schomer, “Measurement of Sound Transmission Loss by Combin-

ing Correlation and Fourier Techniques,” Journal of the Acoustical So-

ciety of America, Volume 51, Number 4 (Part 1), 1972.

[Scussel 1997] K. F. Scussel, J. A. Rice, and S. Merriam, “A New MFSK Acoustic

Modem for Operation in Adverse Underwater Channels,” in Proc. IEEE

Oceans ‟97, Halifax, Nova Scotia, Canada, Oct. 1997.

[Shaw 2006] A. Shaw, A.I. Al-Shamma‟a, S.R. Wylie, and D. Toal, “Experimental

Investigations of Electromagnetic Wave Propagation in Seawater,” in

Proc. 36th European Microwave Conference, Manchester UK, Sept.

2006.

[Shin 2008] S. Y. Shin and S. H. Park, “Omnet++ Based Simulation for Underwater

Environment”, in Proc. 2008 IEEE/IFIP International Conference on

Embedded and Ubiquitous Computing, pp. 689–694, 2008.

[Siegel 1973] M. Siegel and R. W. P. King, “Electromagnetic Propagation between

Antennas Submerged in the Ocean,” IEEE Trans. on Antennas and Prop-

agation, Vol. 4, pp. 507–513, 1973.

[Simulink 2010] Simulink, “Simulation and Model-Based Design,” Accessed online:

http://www.mathworks.com/products/simulink/, Apr. 2010.

[Sklar 2001] B. Sklar, Digital Communications: Fundamentals and Applications,

Second Edition, Prentice Hall PTR: Upper Saddle River, 2001.

243

[Smith 2003] S. Smith, Digital Signal Processing, A Practical Guide for Engineers

and Scientists, Newnes: Amsterdam, 2003.

[Sozer 1999] E. M. Sozer, J. G. Proakis, M. Stojanovic, J. A. Rice, A. Benson, M.

Hatch, “Direct Sequence Spread Spectrum Based Modem for Underwa-

ter Acoustic Communication and Channel Measurements,” in Proc. of

OCEANS‟99, Nov. 1999.

[Sozer 2006] E. Sozer and M. Stojanovic, “Reconfigurable Acoustic Modem for Un-

derwater Sensor Networks,” in Proc. WUWNet‟06, Sept. 2006.

[Stojanovic 1993] M. Stojanovic, J. Catipovic, and J. G. Proakis, “Adaptive multichannel

combining and equalization for underwater acoustic communications,” J.

Acoust. Soc. Am., Vol. 94, No. 3, pp. 1621–1631, Sept. 1993.

[Stojanovic 1994] M. Stojanovic, J. A. Catipovic, and J. G. Proakis, “Phase-Coherent Digi-

tal Communications for Underwater Acoustic Channels,” IEEE Journal

of Oceanic Engineering, Vol. 19, No. 1, Jan. 1994.

[Stojanovic 2003] M. Stojanovic, “Acoustic (Underwater) Communications,” entry in En-

cyclopedia of Telecommunications, John G. Proakis (ed.), John Wiley

and Sons, 2003.

[Stojanovic 2006] M. Stojanovic and L. Freitag, “Multichannel Detection for Wideband

Underwater Acoustic CDMA Communications,” IEEE Journal of Ocea-

nic Engineering, Volume 31, Issue 3, pp. 685–695, July 2006.

[Stojanovic 2006a] M. Stojanovic, “Low Complexity OFDM Detector for Underwater

Channels,” in Proc. OCEANS‟06, Sept. 2006.

[Strutt 1880] J. W. Strutt (Lord Rayleigh), “On the resultant of a large number of vi-

brations of the same pitch and of arbitrary phase,” Philos. Mag. 10, pp.

73–78, 1880.

[Torres 2009] D. Torres, J. Friedman, T. Schmid, and M. B. Srivastava, “Software-

Defined Underwater Acoustic Networking Platform,” in Proc. WUW-

Net'09, Nov. 2009.

[Tritech 2010] Tritech, “AM-300 Acoustic Modem,” Accessed online:

http://www.tritech.co.uk/products/datasheets/am-300-acoustic-

modem.pdf, Apr. 2010.

[URI 2008] University of Rhode Island, Discovery of Sound in the Sea, “Cylindrical

vs. Spherical Spreading.” Accessed online:

http://www.dosits.org/science/adv/cvss1.htm, Sept. 2008.

244

[Urick 1996] R. J. Urick, Principles of Underwater Sound 3
rd

 Edition, Peninsula Pub-

lishing, 1996.

[Venezia 2003] W. Venezia, W. Baxley, P. Tatro, M. Dhanak, F.R. Driscoll, P. Beaujean,

S. Shock, S. Glegg, E. An, M. Luther, B. Weisberg, H. DeFerrari, N.

Williams, H. Nguyen, N. Shay, J. Van Leer, R. Dodge, D. Gilliam, A.

Soloviev, S. Pomponi, M. Crane, and K. Carter, “SFOMC, A Successful

Navy And Academic Partnership Providing Sustained Ocean Observa-

tion Capabilities in the Florida Straits,” Marine Technology Society

Journal, Vol. 37, pp. 81–91, 2003.

[WIS 2009] Wave Information Studies (WIS) Direction Convention, Accessed on-

line: http://www.frf.usace.army.mil/wis/datadefs.html, Aug. 2009.

[WJC 1980] Watkins-Johnson Company, “FSK: Signals and Demodulation, tech-

notes,” Vol. 7, No. 5, Sept./Oct. 1980.

[WOD 2010] World Ocean Database and World Ocean Atlas Series, Accessed online:

http://www.nodc.noaa.gov/OC5/indprod.html, Mar. 2010.

[Yacoub 2005] M. D. Yacoub, G. Fraidenraich, and J.C.S. Santos Filho, “Nakagami-m

phase-envelope joint distribution,” Electronics Letters, Vol. 41, Issue 5,

pp. 259–261, Mar. 2005.

[Yan 2007] H. Yan, S. Zhou, Z. J. Shi, and B. Li, “A DSP Implementation of OFDM

Acoustic Modem,” Proc. WUWNet‟07, Sept. 2007.

[Yip 2000] K.-W. Yip and T.-S. Ng, “A Simulation Model for Nakagami-m Fading

Channels, m < 1,” IEEE Trans. on Comm., Vol. 48, No. 2, Feb. 2000.

[Yang 2004] T. C. Yang, “Environmental effects on phase coherent underwater acous-

tic communications: A perspective from several experimental measure-

ments,” in Proc. High Frequency Ocean Acoustics, Vol. 728, pp. 90–97,

La Jolla, 2004.

[Yang 2008] T. C. Yang and W.-B. Yang, “Performance analysis of direct-sequence

spread-spectrum underwater acoustic communications with low signal-

to-noise-ratio input signals,” J. Acoust. Soc. Am., Vol. 123, No. 2, pp.

842–855, 2008.

[Zhou 2009] S. Zhou, Z. J. Shi, J.-H. Cui, H. Zhou, J. Liu, and P. Carroll, “Aqua-

fModem: A Stand-alone Underwater Acoustic Modem Based on OFDM

Technology,” in Proc. WUWNet'09, Nov. 2009.

245

VITA

Brian S. Borowski

Date of birth: February 26, 1979

Place of birth: Ridgewood, NJ USA

Education:

Stevens Institute of Technology, Hoboken, NJ

Doctor of Philosophy in Computer Science, June 2010

Graduate Certificate in Distributed Systems, January 2008

Graduate Certificate in Computer Systems, May 2007

Stevens Institute of Technology, Hoboken, NJ

Master of Science in Computer Science, May 2004 GPA 4.0/4.0

Graduate Certificate in Database Systems, May 2004

Seton Hall University, South Orange, NJ

Bachelor of Science in Computer Science, May 2001 GPA 4.0/4.0

Minor: Mathematics

Publications:

 Brian Borowski and Dan Duchamp, Measurement-based Underwater Acoustic Physical

Layer Simulation, in Proceedings of MTS/IEEE OCEANS 2010, September 2010, Seattle,

Washington (to appear).

 Brian Borowski and Dan Duchamp, Short Paper: The Softwater Modem - A Software Modem

for Underwater Acoustic Communication, in Proceedings of the ACM International Work-

shop on Underwater Networks (WUWNet'09), November 2009, Berkeley, California.

 Brian Borowski, Characterization of a Very Shallow Water Acoustic Communication Chan-

nel, in Proceedings of MTS/IEEE OCEANS 2009, October 2009, Biloxi, Mississippi.

 Brian Borowski, Alexander Sutin, Heui-Seol Roh, and Barry Bunin, Passive Acoustic Threat

Detection in Estuarine Environments, in Proceedings of SPIE Vol. 6945, March 2008, Orlan-

do, Florida.

 Brian Borowski, Heui-Seol Roh, Barry Bunin, and Alexander Sutin, Estimation of Passive

Acoustic Threat Detection Distances in Estuarine Environments, in Proceedings of the 153rd

Meeting of the Acoustical Society of America, June 2007, Salt Lake City, Utah.

(Placed second in the Best Student Paper competition of the Engineering Acoustics section)

Presentations:

 The Softwater Modem - A Software Modem for Underwater Acoustic Communication, ACM

International Workshop on Underwater Networks (WUWNet'09), November 3, 2009, Berke-

ley, California.

246

 Characterization of a Very Shallow Water Acoustic Communication Channel, MTS/IEEE

OCEANS 2009, October 29, 2009, Biloxi, Mississippi.

 Characterization of a Very Shallow Water Acoustic Communication Channel, Maritime Secu-

rity Laboratory at Stevens Institute of Technology, October 5, 2009, Hoboken, NJ. (End-of-

year review presentation given to ONR sponsor)

 Elements of Channel Characterization, Maritime Security Laboratory at Stevens Institute of

Technology, January 6, 2009, Hoboken, NJ.

 A Software-Based Approach to Communication in Underwater Acoustic Sensor Networks,

Stevens Institute of Technology, November 24, 2008, Hoboken, NJ. (Presentation used at

thesis proposal defense)

 Passive Acoustic Threat Detection in Estuarine Environments, Stevens Institute of Technolo-

gy, March 28, 2008, Hoboken, NJ. (Presentation used at oral qualifying examination)

 Estimation of Passive Acoustic Threat Detection Distances in Estuarine Environments, 153rd

Meeting of the Acoustical Society of America, June 5, 2007, Salt Lake City, Utah.

Honors:

 Stanley Fellowship, September 2009 - May 2010 (tuition, fees, and stipend)

Competitively awarded across all fields at Stevens Institute of Technology; total of 8 awards

granted

 Stanley Fellowship, September 2008 - May 2009 (tuition, fees, and stipend)

Competitively awarded across all fields at Stevens Institute of Technology; total of 10 awards

granted

 Upsilon Pi Epsilon - the Honor Society in Computing and Information Disciplines, December

2006

 Technogenesis Fellowship, September 2005

 Outstanding Computer Science Teaching Assistant, May 2004

 First in Class, Summa Cum Laude, and Computer Science Departmental Honors Citation,

May 2001

 Pi Mu Epsilon - the Honorary National Mathematics Society, May 2000

 Seton Hall Provost Scholarship (4-year, full tuition), September 1997

Certification: Sun Certified Programmer for the Java 2 Platform, May 2002

Skills:

Programming Languages: Java, C++, C, Visual Basic, MATLAB, PHP, Perl, Scheme, Bash,

and SQL

Operating Systems: Microsoft Windows 3.1 - Vista, and Ubuntu Linux

Databases: MySQL, SQL Server, and Access

Web Technologies: HTML/XHTML, CSS, JavaScript, JSP, ASP, XML, XSLT, and XSL-FO

Design Technologies: UML, Rational Rose, and ER diagrams

Version Control: Rational ClearCase/ClearQuest and MKS Source Integrity

247

Software: IIS, Microsoft Office, Dreamweaver, Corel Paint Shop Pro, WinRunner, Apache Tom-

cat, and Apache FOP

Hardware: Proficient at building, upgrading, and troubleshooting Intel and AMD-based PCs

Experience:

Stevens Institute of Technology, Hoboken, NJ

Research Assistant 08/05 - Present

 Extend OMNeT++ with an underwater channel model implemented in MATLAB and ex-

ported as a shared library

 Design and implement a configurable acoustic software modem in Java/C that integrates with

the sockets interface for easy deployment of network applications

 Characterize the Hudson River estuary as a communications channel by generating the scat-

tering function and all derived views

 Build PC104-based computers for use in an underwater sensor network

 Research diver detection using passive sonar

Teaching Assistant 01/03 - 05/04; 08/07 - 12/07

 Created syllabus, chose required textbook and supplementary materials, and devised and

graded assignments for a new course in concurrent programming in conjunction with my ad-

viser (Fall 2007)

 Taught object-oriented software design and programming techniques (Spring 2003), introduc-

tion to computer science (Fall 2003), and data structures and algorithms (Spring 2004) under

the guidance of the professor

 Led recitation sessions, held office hours, and devised and graded assignments

Cargo Manager Systems, Union, NJ

Web Developer Consultant 10/07 - 10/08

 Enhanced n-tier web applications (JSP/XHTML - Java beans - JDBC) that manage imports,

exports, transportation, and warehousing for the supply chain industry

 Modified functionality of a web application that performs government filing of import ship-

ments

Syncsort Incorporated, Woodcliff Lake, NJ

Associate Software Engineer 06/04 - 08/05

 Enhanced DMExpress, an application for sorting, aggregating, copying, joining, and merging

extremely large quantities of data

 Utilized MFC to add new front-end features

 Developed back-end infrastructure in standard C++ to run DMExpress tasks in parallel

 Wrote and executed WinRunner scripts to ensure program stability

 Created Perl and Bash scripts to facilitate source code management procedures

248

KPMG LLP, Montvale, NJ

Programmer Analyst 10/02 - 12/02

 Debugged, maintained, and enhanced KPMG/Link Enterprise, an application that manages

expatriate employees and related tax issues

 Performed and tested software builds

Prudential Financial, Iselin, NJ

Web/Application Developer 07/01 - 07/02

 Worked in a team to develop an award-winning application for content management and

desktop publishing using ASP 3.0

 Developed a Visual Basic tool that tests the business logic of asset allocation software written

in XML

 Designed and coded an ASP 3.0 user interface for Asset Allocation Online, a web application

that enables a client to perform his or her own asset allocation by answering questions over

the Internet

 Redesigned a series of web pages that contains the monthly performance review and daily

unit values of variable life insurance products

ADP, Roseland, NJ

Web Developer Co-op 06/00 - 08/00

 Created an intranet site for the PCPI - Internet Payroll for the PC - department to keep all

team members aware of their project's status

 Devised a JSP application that dynamically creates links to files within specific directories so

that information can easily be added to the site without maintenance

Seton Hall University, South Orange, NJ

Software Developer 05/00 - 07/00; 05/99 - 07/99

 Provided new software for professors seeking teaching tools

 Proposed, designed, and developed a sorting algorithms demo in Java for use in the CDI -

Curriculum Development Initiative – project

 Designed and developed a truth table constructor in Java for use in the CDI project

Other Experience:

Saint Bonaventure Church, Paterson, NJ

Organist/Pianist/Cantor/Director of Music 11/91 - Present

Seton Hall University, South Orange, NJ

Assistant Organist/Cantor 09/97 - 05/01

Memberships: ACM, IEEE, ASA

