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APPLICATION OF CHANNEL ESTIMATION TO UNDERWATER ACOUSTIC 

 COMMUNICATION 

ABSTRACT 

The underwater channel poses numerous challenges for acoustic communication.  Acous-

tic waves suffer long propagation delay, multipath and fading, limited bandwidth, and potentially 

high spatial and temporal variability.  In addition, there is no typical underwater acoustic channel; 

every body of water exhibits quantifiably different properties.  Consequently, current modems – 

implemented in hardware with a fixed, conservative set of transmission parameters – are often ill-

suited for a particular channel, resulting in performance that is far from optimum.  Very little 

work has been done in the area of channel characterization, especially for waters only several me-

ters deep.  As a result, network simulations often make conservative and/or inaccurate assump-

tions about shallow underwater channels. 

In this thesis the Hudson River estuary is characterized as an acoustic communication 

channel.  The analysis reveals that the Hudson is a multipath fading channel (Rician fading over 

200 m and Gamma fading over 505 m) with an extremely short coherence time of approximately 

50 ms.  A subset of the estimation techniques is then employed to develop a network simulation 

and an adaptive, real-time software modem.  

The simulator converts a transmitted packet into a modulated signal and digitally mixes it 

with the channel estimates to produce a signal that approximates what would have been received 

after transmission through the physical channel.  When simulating a time-invariant channel, the 

achieved bit error rates are, on average, within 3.34% of those obtained by transmission through 

the actual channel.  The simulator is modular and can easily accommodate new channel estimates, 

modulation schemes, receiver techniques, and alternate implementations of higher layers in the 

network stack. 
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In the software modem each packet is preceded by an acoustic signal that is used for im-

pulse response estimation.  The modem then processes the signal in real time and uses the inverse 

impulse response to equalize the channel, allowing for the transmission of packets at higher data 

rates with symbols whose duration is less than the multipath spread of the channel.  In a time-

invariant shallow water test channel, the modem correctly decoded packets at up to 6 kbps.  In an 

AWGN channel, the modem‟s BER approached the theoretical limit for the given SNR. 
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Chapter 1  

Introduction 

1.1 Applications of Underwater Acoustics 

 One of the earliest references to the existence of underwater acoustics appears in one of 

Leonardo da Vinci‟s notebooks [Urick 1996].  In 1490, he wrote, “If you cause your ship to stop, 

and place the head of a long tube in the water and place the outer extremity to your ear, you will 

hear ships at a great distance from you.”  Motivated by the sinking of the Titanic, in 1912 L. F. 

Richardson filed a patent application with the British Patent Office for echo ranging with under-

water acoustics, but he did not implement his proposal [Urick 1996].  Meanwhile, in the United 

States, R. A. Fessenden designed and built a moving-coil transducer for both submarine signaling 

and echo ranging which, by 1914, was able to detect an iceberg at a distance of two miles [Urick 

1996].  Military applications of sonar were stimulated by the outbreak of the World War I and II, 

though it wasn‟t until the latter where echo-ranging sonar was able to effectively combat the 

German U-boat [Urick 1996].  An underwater telephone, developed in 1945 in the United States 

for communicating with submarines, was one of the first underwater communication systems 

[Stojanovic 2003].  Today, underwater acoustics are used for communication in a broad range of 

applications, mostly sensor-based, including ocean sampling networks, environmental monitor-

ing, undersea explorations, disaster prevention, assisted navigation, speech transmission between 

divers, distributed tactical surveillance, and mine reconnaissance [Akyildiz 2005; Stojanovic 

2003]. 

 The Maritime Security Laboratory (MSL) at Stevens Institute of Technology has been 

researching port security, with emphasis on detecting underwater threats in the Hudson River.  A 

hypothetical extension to the lab‟s efforts is to design an underwater acoustic sensor network to 

aid in detecting divers, surface swimmers, AUVs, and small surface boats.  The nodes will gather 
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and process signals in real time and send the resulting information via acoustic links to a base 

station with satellite or RF capabilities. 

Over the past decade, network systems for similar applications have been deployed.  For 

example, the initial motivation for the Seaweb project was the need for wide-area undersea sur-

veillance in littoral waters by means of a deployable autonomous distributed system (DADS) 

[Rice 2001].  Seaweb ‟98 led off a series of annual ocean experiments intended to progressively 

advance the state of the art in underwater acoustic communications.  The goal of Seaweb 2008, 

the latest of these experiments, is to provide surveillance of the Port of Long Beach [NPS 2008].  

The Persistent Littoral Undersea Surveillance Network (PLUSNet) is a multi-institution program 

sponsored by the Office of Naval Research which aims to provide autonomous detection and 

tracking of quiet submarines [Grund 2006].  While the network supports satellite or RF links be-

tween nodes, acoustic links are reserved for nodes that do not have a surface presence or must 

maintain depth to carry out a mission.  In addition, NATO recognizes the importance of detecting 

submarines and other small submersibles and has established a research project for Reconnais-

sance, Surveillance, and Undersea Networks (RSN) [NATO 2008].  Among other goals, the plan 

calls for “applied research into covert undersea communications and networking and technology 

research into using LAN-based information architectures.” 

Though many of today‟s efforts are directed toward security-based applications, some re-

cent ocean exploration/monitoring projects have made use of underwater communication.  Be-

tween 1999 and 2002, the Front-Resolving Observational Network with Telemetry (FRONT) 

study was established to accomplish data telemetry and remote control for a set of widely spaced 

oceanographic sensors through the use of the Seaweb underwater acoustic network [Rice 2008].  

Today, the South Florida Ocean Measurement Center (SFOMC) exists as an ongoing partnership 

between the Navy and Florida Atlantic University for oceanographic monitoring of the Florida 
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Straits [Venezia 2003; GulfBase 2008].  One aspect of this project is the development and use of 

acoustic modems in shallow water for real-time transmission of AUV observations to mobile and 

fixed bottom receiving and telemetry instrumentation. 

1.2 Reasons for Acoustic Communication 

 While some projects deploy underwater networks for ocean sampling, many others still 

rely on conventional techniques.  There are two standard methods for gathering oceanographic 

data that do not make use of acoustics.  One such approach is to deploy tethered sensors.  Al-

though this method results in high throughput with virtually no bit errors, it is limited to short 

distances in locations where the cables can be placed unobstructed.  The other widely used ap-

proach is to deploy underwater sensors that record data for a specified amount of time and then 

are recovered upon completion of the task.  With this method there are no bit errors, but there are 

a significant number of drawbacks [Akyildiz 2005]: 

1. The (repeated) deployment and recovery of the instruments can be an expensive, difficult, 

or dangerous procedure. 

2. The data processing cannot be performed in real time. 

3. There is no interaction with the device after it is deployed, impeding any fine-tuning or 

reconfiguration that might be necessary for maintaining functionality. 

4. It might be difficult or impossible to detect the failure of an instrument until after it is re-

covered, possibly resulting in the failure of the entire mission. 

5. The amount of data recovered is limited by the storage space on the device itself. 

 Since both tethered and standalone devices have numerous disadvantages, most underwa-

ter sensor networks employ a wireless physical layer with acoustic links.  Two other wireless me-

thods, radio frequency (RF) and optical transmission, have several limitations that prevent them 

from being widely utilized in underwater channels, the most significant being short propagation 
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distance.  While pure water is an insulator, most bodies of water contain dissolved salts and other 

matter, making them partial conductors.  The level of attenuation of radio signals is directly pro-

portional to the conductivity of the water.  The attenuation of radio waves in water also rises with 

an increase in frequency and is proportional to      where f is the frequency in Hz, and s is the 

conductivity of the water in mhos/meter
1
.  Because of the salinity levels, attenuation in sea water 

is very high, and to communicate at any depth, it is necessary to use very low frequencies (long 

wave radio, 10 – 30 kHz) where attenuation is on the order of 3.5 to 5 dB per meter [Butler 

1987]. 

While Maxwell‟s equations can be used to predict the propagation of electromagnetic 

waves traveling in seawater, there have been some papers describing actual measurements of ho-

rizontal propagation.  Propagation in seawater 76 meters deep at 7 MHz produced a transmission 

distance of 460 meters [Al-Shamma'a 2004], while propagation at 14 MHz was experimentally 

shown to produce a transmission distance of only some 10 to 20 feet [Siegel 1973].  In both expe-

riments, propagation exhibited significant signal loss.  For frequencies from 0.1 – 20 MHz, the 

total signal loss over 1 km is severe, ranging from -112 to -166 dB [Al-Shamma'a 2004].  A more 

recent experiment demonstrated that electromagnetic waves propagated from 2 to 30 meters with 

a constant transmitter power of 100 mW [Cella 2009]. 

Because of scattering and absorption, optical systems are also limited to short distances.  

Scattering reduces signal levels and limits the maximum data rate when multipath stretches the 

time of a pulse to that of the bit time.  Infrared modulation cannot be used underwater, since wa-

ter is not transparent in that region of the spectrum.  Visibility in the Irish Sea, for instance, is 

typically 0 meters and only 1 – 2 meters at best due to suspended matter in the water [Shaw 

2006].  Replacing infrared LEDs with high power blue and green LEDs has been stated to pro-

                                                             
1 mho is a unit of electrical conductance, equal to one ampere per volt. 
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duce bandwidths up to 312.5 kbits/sec [Schill 2004].  This result was achieved in a round pool at 

a distance of approximately 2 meters.  The latest demonstrations have proven that optical com-

munication at 1 Gbit/sec through a 2-meter water pipe with up to 36 dB of narrow-beam extinc-

tion is possible [Hanson 2008].  Since it is difficult to perform such experiments in the ocean, 

most underwater optical propagation measurements are performed in a lab tank, leaving the effi-

cacy of such systems in natural environments yet to be explored. 

1.3 Principles of Underwater Acoustics Relevant to Communication 

Acoustical transmission is more flexible than other approaches, as it can be deployed in a 

wide variety of configurations, including networks consisting of both mobile and stationary 

nodes.  It is not, however, free of complexity.  In fact, certain aspects of underwater acoustic 

communications are more difficult than those of RF terrestrial networks, especially high propaga-

tion delay.  In general, underwater acoustic communications are influenced by transmission loss, 

bubbles, stratification, multipath propagation, Doppler spread, noise, and high propagation delay. 

 

Figure 1-1: Spherical and cylindrical spreading.  Sound generated by the sound source, shown as the 

white dot in the center, begins by spreading out uniformly in all directions.  The intensity of the 

sound decreases rapidly as it spreads out from the sphere with radius s0 to the one with s.  The sound 

can no longer spread out uniformly once it reaches the surface and floor of the water, and begins to 

spread out cylindrically, radiating horizontally away from the source.  The intensity of the sound 

decreases more slowly as it spreads from the cylinder with radius co to the one with c than when it 

spreads out from the sphere with radius s0 to the one with s [URI 2008]. 
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Transmission loss describes the weakening intensity of sound over a distance and is com-

prised of losses from both spreading and attenuation.  Spreading loss is a geometrical effect that 

represents the weakening of sound as the wave moves outward from the source.  It can be further 

classified as spherical spreading, cylindrical spreading, or a variant with properties somewhere 

between the two.  Spherical spreading is omnidirectional, where the sound intensity decreases 

with the square of the range.  Cylindrical spreading, on the other hand, takes place in horizontal 

channels, where the pressure of the sound varies inversely with the range [Urick 1996].  Figure 

1-1 depicts the differences between the two types of spreading.  Attenuation loss encompasses the 

effects of absorption, scattering, and leakage out of a sound channel [Urick 1996].  Absorption, a 

true loss of acoustic energy that results from the conversion of that energy into heat, accounts for 

the majority of attenuation.  Marsh and Schulkin‟s empirical formula for the attenuation coeffi-

cient in sea water is often used for frequencies between 3 kHz and 0.5 MHz, while Thorp‟s for-

mula better describes the attenuation of low frequency sounds, in the range of 100 Hz to 3 kHz 

[Brekhovskikh 2003].  The attenuation coefficient produced by both formulas is expressed in 

dB/km for a frequency f in kHz; however, Marsh and Schulkin‟s formula also requires values for 

the salinity and hydrostatic pressure of the body of water.  Since attenuation increases rapidly 

with frequency, there exists an upper limit on the frequency used for a link of a given distance in 

a digital communication system. 

Bubbles produced by breaking waves at the surface can influence the propagation of high 

frequency signals.  No bubble-induced losses were discovered for waves produced with wind 

speeds of 6 m/s or less [Preisig 2006].  However, with faster wind speeds, losses increased as 

wind speed increased, with 20 dB loss reported for a wind speed of 10 m/s. 
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Figure 1-2: Shadow zones (white areas) created by the refraction of waves in deep water. 

 

Stratification, the separation of a body of water into layers of similar densities, can also 

greatly impact the availability of an acoustic link.  Fluctuations in the sound speed within a chan-

nel cause the refraction of signals, which in turn lead to shadow zones, areas nearly void of 

acoustic signal.  This shadow zone phenomenon occurs in large bodies of water at a depth of 

5000 m and distance of 100 km as well as in shallow regions of about 100 m in depth and 3 km 

across [Preisig 2006].  Figure 1-2 shows the refraction of waves in a deep water environment with 

a Munk sound velocity profile
2
 [Munk 1974] and the shadow zones created by this propagation 

pattern. 

                                                             
2 The sound velocity profile, sometimes called the sound speed profile, plots the velocity of sound as a function of 

depth.  The velocity values are often derived from salinity, temperature, and depth measurements.  The Munk profile is 

a canonical sound velocity profile that illustrates features typical of deep water environments. 
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Figure 1-3: Multipath propagation in shallow water consists of the direct path and reflections from 

the surface and bottom. 

 

 

 

Figure 1-4: Channel-induced intersymbol interference.  The top portion shows how a transmitted 

signal appears at the receiver after passing through a channel where the symbol time Ts is greater 

than the delay spread of the channel Tm.  Since the channel represented here is ideal, it does not mod-

ify the transmitted signal in any way.  The bottom portion shows how a transmitted signal becomes 

distorted when Ts is less than Tm.  The symbol from one time slot “smears” into the following slot, 

resulting in channel-induced intersymbol interference. 
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Multipath propagation in an underwater acoustic network is the phenomenon where the 

acoustic signal will reach the receiver by two or more paths.  It is prevalent in shallow water, 

where acoustic links are horizontal and spreading is considered to be almost entirely cylindrical, 

but it is not much of an issue in vertical channels.  In shallow environments, some acoustic sig-

nals from the transmitter are reflected off the surface of the water and bottom of the channel be-

fore reaching the receiver, thus creating multipath propagation (see Figure 1-3).  Delay spreads in 

shallow environments can last for several milliseconds.  Unless complex adaptive filters are uti-

lized, the duration of a communication system‟s symbol time must be greater than the delay 

spread of the channel in order to avoid intersymbol interference, or ISI (see Figure 1-4). 

Shallow water channels exhibit temporal variation due to tides, a moving surface, and 

fluctuating amounts of water traffic.  These changes significantly affect the impulse response of 

the channel, leading to potentially drastic differences in the estimates obtained over sub-second 

intervals.  These rapid fluctuations in the channel lead to a short coherence time, the duration over 

which the channel‟s properties are essentially invariant.  When viewed from the from the fre-

quency domain, the channel exhibits a wide Doppler spread.  In time-varying environments, re-

ceivers need to repeatedly estimate and quantify changes in the environment to keep an acoustic 

link functional.  Such systems typically employ a decision feedback equalizer (DFE) [Stojanovic 

2003]. 

Several papers assume ambient noise in underwater channels is white Gaussian noise; 

however, this assumption is now known to be incorrect.  Though it is difficult to precisely derive 

a formula for noise, empirical formulas that give the power spectral density of noise caused by 

turbulence, shipping, waves, and thermal noise do exist [Coates 1989].  These formulas are gene-

ralized and do not account for extreme conditions in certain environments.  For example, during 

some of the underwater acoustic experiments conducted in the Hudson River off the campus of 



10 
 

 
 

Stevens Institute of Technology, the sounds and physical vibrations produced a pile-driver in a 

nearby construction site obliterated all signals up to 100 kHz.  In addition, in shallow areas with 

temperate and tropical waters, such as Kaneohe Bay, O‟ahu in the Hawaiian Islands, snapping 

shrimp produce a tremendous amount of noise.  The peak-to-peak source level of a snap can 

reach 185 dB re: 1 µPa, and the frequency spectrum of the snap is extremely broad, with energy 

beyond 200 kHz [Au 1998].  Thus, the noise present in some of these shallow environments can 

render underwater acoustic communication impossible at times. 

The speed of sound in water is approximately 1500 m/s, which is five orders of magni-

tude less than the speed of light, or 3 x 10
8
 m/s.  This slow speed leads to long propagation delays 

of about 0.67 km/s and comparatively large motion-induced Doppler shift [Partan 2006].  Some 

researchers believe that the high delay variance is more detrimental to the design of efficient pro-

tocols than the propagation delay, since it precludes accurately estimating round trip time [Akyil-

diz 2005].  Others state that although the underwater acoustic channel is time-varying, propaga-

tion delays can be estimated and are stable enough to use within network protocols [Partan 2006]. 

1.4 Motivation for Research 

The initial goal of this research was to create an adaptive communication system that 

would allow a set of nodes to be deployed into any body of water; the nodes would then sense 

channel conditions and adapt.  Adaptation would be both initial (immediately upon deployment) 

and ongoing, hopefully providing increased overall system efficiency compared to non-adaptive 

systems.  It soon became apparent that the goal was overly ambitious because a fully adaptive 

system would have to be able to change not only physical parameters (such as frequency and 

modulation technique) but also link-level and routing-level operation.  Several other facts also 

became apparent during the literature search and formative stages of this work, including that (1) 

there was no satisfactory adaptive experimental platform, (2) there was no satisfactory simulation 
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platform, and (3) there was limited information about how to characterize an acoustic underwater 

channel and how to apply results of the characterization to the design of adaptive digital commu-

nication.  Accordingly, this research set out to address these three shortcomings.  The design of a 

multi-node system, adaptive at all levels, is left as future work. 

Understanding how the channel affects signals is critical to the design of an efficient 

communication system.  At the physical layer, thorough analysis of the channel can suggest the 

type of modulation, symbol duration, required source level, length of packets, and the type and 

rate of equalization.  In this dissertation, data collected during channel sounding experiments and 

the methods used to process that data become the backbone of the entire effort.  The resulting 

impulse response estimates from both a controlled, time-invariant indoor test environment and the 

complex, time-variant Hudson River estuary are processed from the time and frequency domains 

to fully describe the properties of the channels.  Analysis of the Hudson is a unique extension to 

previous work in this area because, at 3 meters, it is shallower than other channels that have been 

studied.  In addition, unlike many publications or even textbooks, this dissertation clearly shows 

how to compute the various channel characterization functions in MATLAB, describes the limita-

tions of the experimental setup, and offers solutions to mitigate the effects of the limitations, all 

of which are valuable to the experimentalist. 

Even the most recent efforts in simulating the underwater channel have fundamental limi-

tations.  In the World Ocean Simulation System (WOSS), the authors use the BELLHOP model 

to derive the Signal-to-Interference-plus-Noise Ratio (SINR) from which they compute the bit 

error rate (BER) for a given modulation [Guerra 2009].  ISI caused by multipath propagation, 

common in shallow water channels, is not taken into account in this model.  Therefore, in this 

dissertation, a new model based on channel measurements is introduced.  Through a mathemati-

cal process called convolution, the impulse response estimates obtained from the channel sound-
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ing experiment afford a more accurate simulation of how the channel distorts an acoustic signal.  

The original modulated waveform is “mixed” with the channel and sent to a receiver imple-

mented fully in software, where the actual BER is computed. 

The last portion of the research combines the channel estimation techniques and software 

defined radio aspects of the simulation to produce a pseudo real-time underwater acoustic modem 

– the Softwater Modem [Borowski 2009].  Unlike existing efforts implemented purely in software 

[GNU 2010; Sailer 2000], this modem is packet-based and mitigates channel-induced ISI through 

means of a zero-forcing equalizer.  It has been proven to work in an office test environment that 

exhibits a significant amount of multipath propagation where the other software defined radio 

(SDR) platforms have failed.  Furthermore, the Softwater Modem allows the user to configure 

numerous parameters including the carrier frequency, symbol rate, packet detection threshold, 

and number of parity bytes used in the Reed-Solomon error correcting codes. 

1.5 Dissertation Outline 

The dissertation is divided into the following topics: channel characterization, software 

modem design and implementation, and simulation of the underwater channel and physical layer.  

Chapter 2 discusses the characterization of two very different channels, those being the Hudson 

River estuary adjacent to the Stevens Institute of Technology campus and an office test setup 

comprised of a plastic tub filled with water.  In both cases, successive impulse response estimates 

are processed to generate the channel‟s scattering function, from which all other characterization 

functions are derived – multipath intensity profile, spaced-frequency correlation function, Dopp-

ler power spectrum, and spaced-time correlation function.  Amplitude fluctuations of the compo-

nents in the multipath intensity profile are fit to the Rayleigh, Rice, and Nakagami-m distributions 

often used to model fading channels.  Values obtained in the analysis of the characterization func-
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tions yield estimates of the delay spread and coherence time of the channel as well as the severity 

of fading, all of which greatly influence the design of a digital communication system. 

Chapter 3 discusses how to more accurately implement channel and physical (PHY) layer 

models in the OMNeT++ discrete-event simulator.  In order to simulate a time-variant channel, 

an impulse response is chosen from the database at random and convolved with the waveform 

representing the modulated packet.  The resulting signal, which now contains channel-induced 

distortion, is passed to a receiver block, where it is demodulated and its bit BER is computed.  

The signal processing blocks, exported as a shared library, are performed in MATLAB and called 

from within the OMNeT++ simulation.  Aspects of the simulation‟s architecture are described in 

detail.  In addition, the experiment used to validate the accuracy of the estimated BERs is ex-

pounded. 

Chapter 4 presents the design of the Softwater Modem, an acoustic modem fully imple-

mented in software.  The modem allows users to easily deploy network applications that make 

use of the sockets interface in Linux.  The system is comprised of three layers of user space ap-

plications which pass data among themselves via UDP sockets and the TUN kernel space charac-

ter device.   The modem portion of the system is a Java application built as a series of stages that 

handle various aspects of signal processing.  The details of the algorithms, computational perfor-

mance, and expected BER in an additive white Gaussian noise (AWGN) channel are presented. 

Chapter 5 provides an evaluation of the thesis and a summary of the contributions to the 

field.  The appendix contains the most relevant sections of source code for channel characteriza-

tion routines, the acoustic modem, and the simulation of the channel and physical layers. 
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Chapter 2  

Shallow Water Channel Characterization 

2.1 Introduction 

Over the past three decades there has been much research in underwater acoustic com-

munication.  While recent years have seen the shift from noncoherent point-to-point communica-

tion to developing networks based on coherent reception techniques [Chitre 2008], relatively few 

papers have focused on the fundamental process of characterizing the underwater acoustic chan-

nel.  There is no typical underwater channel [Preisig 2006]; each environment possesses different 

characteristics that will affect the performance of a digital communication system.  Therefore, it 

is necessary to study numerous underwater acoustic channels to gain a quantitative understanding 

of their properties, as had been done in the RF research community. 

The shallow water acoustic communication channel can be classified as a multipath fad-

ing channel.  It generally exhibits a long multipath delay spread, which can lead to intersymbol 

interference (ISI) if the spread exceeds the symbol time of the communication system, as shown 

in Figure 1-4.  The channel typically has significant Doppler spread in the frequency domain, or 

short coherence time when viewed in the time domain.  Communication in estuarine environ-

ments is often complicated by ambient noise from both shipping vessels and activity on the sur-

rounding land, such as that in a construction site.  The depth of water in an estuary is extremely 

shallow; thus, the effects of surface waves and wind speed on an underwater acoustic signal are 

more apparent.  In addition, estuaries are prone to stratification, the separation of a body of water 

into layers of similar densities.  Fluctuations in the sound speed within a water column cause the 

refraction of signals, which in turn leads to shadow zones – areas nearly void of acoustic signal, 

as shown in Figure 1-2. 



15 
 

 
 

Measuring and analyzing a channel‟s parameters is a necessary step for the design of a 

successful communication system.  Moreover, numerous channel measurements are required to 

build up a database of underwater environments that helps the research community create a model 

for more realistic simulation of the physical as well as higher layer protocols within a communi-

cation system‟s network stack.  Chapter 3 describes how to use the channel measurements from 

this chapter in an underwater network simulation implemented in OMNeT++ and MATLAB. 

2.2 Description of Signals and Functions 

The impulse response provides all the information necessary for channel characterization.  

In order to estimate the channel‟s impulse response, two signals are needed – a known reference 

or “sounding” signal that covers the frequency band of interest and the received signal, that is, 

one that has passed through the channel and has undergone some degradation.  The impulse re-

sponse of a system taken repeatedly over time affords the ability to produce the scattering func-

tion, which in turn can be made to show different channel correlation functions via Fourier trans-

forms. 

2.2.1 Sounding Signal 

Since a unit impulse is an unrealizable signal, engineers choose a practical input signal to 

the system that will lead to an accurate estimation of the system‟s impulse response.  Several sig-

nals are frequently employed, those being a LFM (linear frequency modulated) chirp [Dessaler-

mos 2005], a HFM (hyperbolic frequency modulated) chirp [Michalopoulou 2001], white noise 

[Schomer 1972], and a DSSS BPSK (direct sequence spread spectrum binary phase shift keying) 

signal [Chitre 2004; Dessalermos 2005].  While it is debatable which sounding signal is the best, 

all except for the HFM chirp possess acceptable autocorrelation properties as to closely approx-
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imate the Dirac delta function
3
.  Autocorrelation that approximates the Dirac delta function is the 

test of goodness for a sounding signal.  In general, the best result is obtained when the sounding 

signal spans the entire bandwidth from 0 Hz up to the Nyquist
4
 frequency (except in the case of 

the HFM chirp).  However, because of the potential ambient noise in lower frequency bands and 

the lack of low frequency response in most emitters, the starting frequency for the sounding sig-

nal is sometimes chosen to be several kHz.  It should be noted, though, the increasing the lower 

frequency will decrease the autocorrelation function‟s likeness to the Dirac delta function, as seen 

in Figures 2-1 through 2-5. 

 

 

 

 
Figure 2-1: Autocorrelation of HFM chirp 5-20 kHz, 50.0 ms. 

                                                             
3 In the context of signal processing, the Dirac delta function is referred to as the unit impulse, or a signal having infi-

nite amplitude, zero width, and unit area. 
4 The Nyquist frequency is half the sampling frequency of a discrete signal processing system. 
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Figure 2-2: Autocorrelation of bandpass filtered white noise 5-20 kHz, 50.0 ms. 

 

 

 
Figure 2-3: Autocorrelation of LFM chirp 5-20 kHz, 50.0 ms. 
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Figure 2-4: Autocorrelation of DSSS/BPSK signal 5-20 kHz, 42.6 ms. 

 

 

 

 

Figure 2-5: Autocorrelation of white noise, 50.0 ms. 
 

 

Figures 2-1 through 2-5 show the autocorrelation of five sounding signals that have been 

used by researchers to estimate a channel‟s impulse response, in increasing order of similarity to 
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the Dirac delta function.  The autocorrelation of the HFM chirp in Figure 2-1 exhibits significant 

side lobes which will reduce the accuracy of the impulse response estimate.  The autocorrelation 

of the bandpass filtered white noise in Figure 2-3 and LFM chirp signal in Figure 2-4 are roughly 

the same, with smaller side lobes than the HFM chirp.  The LFM chirp signal, however, possesses 

less fluctuation in the correlation coefficient at lags further from the center.  While the autocorre-

lation function of both types of chirp signals exhibits side lobes, it is stated that in horizontal shal-

low water, where the channel frequency spreading is low if the transmitter and receiver remain 

fixed, chirp signals are well known to possess the best delay (range) sensitivity [Cook 1998]. 

Figure 2-4 shows the autocorrelation of the DSSS/BPSK signal generated from the 

MSE/AO maximum length sequence of code length 511 found in [Kärkkäinen 2007] with a 12 

kHz carrier.  The MSE/AO criteria emphasize autocorrelation properties, and the autocorrelation 

of just the sequence itself is indeed an impulse.  However, when mixed with a carrier, the auto-

correlation of the resulting BPSK signal possesses one lobe of negative correlation on each side 

of the impulse. 

The noise signal in Figure 2-5 most closely approaches the Dirac delta function.  It is 

supposed to represent white noise, but since the duration of the signal is so short, not all frequen-

cy components have been given equal representation, making it improper to fully classify the 

noise as “white”.  The autocorrelation of this signal fluctuates minimally at lags off to the sides, 

and it does not exhibit any side lobes.  Moreover, increasing the length of the signal will further 

improve the autocorrelation function, as there is more randomness in a longer signal.  Figure 2-6 

illustrates how a 1-second clip of white noise exhibits a much cleaner autocorrelation function 

than a 10-ms clip. 
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Figure 2-6: Autocorrelation of white noise signals, 10 ms and 1 s. 

To make a fair comparison among the autocorrelation functions of all five signals, each 

signal was designed to be about the same length and use approximately the same bandwidth.  The 

5-20 kHz frequency band was utilized for two reasons.  5 kHz was used as the lower bound be-

cause, as already stated, many emitters are incapable of producing low frequency signals.  20 kHz 

was used as the upper bound so that a typical PC sound card can be used to play the sounding 

signals.  The generation of the chirp signals is straightforward.  See Appendix A for MATLAB 

code.  Generating a DSSS/BPSK digitally requires the designer to pay careful attention to the 

sampling rate of the playback hardware.  In particular, each symbol in the maximum length se-

quence must be multiplied by an integer number of samples in each sampling period.  This im-

plies that the symbol rate must divide the sampling rate, which thus limits the number of symbol 

rates that can be used.  The bandwidth of the main lobe of the resulting BPSK signal is 

        
 

  
         (2.1) 
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where Ts represents the symbol time and Rs is the symbol rate.  Each symbol must contain the 

same number of periods of the carrier wave so that the phase shifts always occur 180° apart.  

Therefore, the carrier frequency Fc must be a multiple of the symbol rate in the range 1 ≤ Fc ≤ 

Nyquist frequency. 

The DSSS/BPSK signal described in this section was created with a 12 kHz carrier fre-

quency and a symbol rate 12 ksamples/sec.  It occupies the entire bandwidth below 24 kHz.  The 

unfiltered white noise also covers the same band.  The power spectral density of all five sounding 

signals is shown in Figure 2-7. 

 
Figure 2-7: Power spectral density of various channel sounding signals. 

In order to produce the channel‟s scattering function with enough resolution (wide range 

of frequencies), the channel needs to be sounded as often as possible per second.  There are, how-

ever, some constraints on the length of the sounding signal.  The length of the signal must not 

exceed the coherence time of the channel.  This restriction exists because the channel‟s characte-

ristics need to remain nearly constant over the duration of the sounding in order to capture a sin-

gle undistorted impulse response estimate.  When played consecutively with no silence between 
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repetitions, the length of the sounding signal must exceed the channel‟s multipath spread.  If there 

is no silence between soundings, all multipath arrivals must appear within the duration of a 

sounding so that late arrivals do not overlap with the arrivals appearing from subsequent repeti-

tions.  This restriction can be eliminated if a shorter chirp signal can be used; however, it must be 

followed by a period of silence long enough to allow all multipath propagations to taper off.  

Though this method produces correct estimates, it results in correlations with reduced SNR (sig-

nal-to-noise ratio), as there are less samples in each sounding to work with.  Therefore, there is no 

benefit to using gaps of silence.  

 Figures 2-8 through 2-10 illustrate why the restrictions on the length of a sounding signal 

exist.  In all three sections, the multipath spread of the channel is 50 ms.  Figure 2-8 depicts cor-

rect channel sounding with the use of a 60 ms signal that exceeds the 50 ms multipath spread.  

Figure 2-9 also depicts correct, though not ideal, channel sounding with the use of a 10 ms signal 

followed by 50 ms of silence that guarantees all arrivals taper off before the subsequent sounding.  

Figure 2-10 shows what happens when the channel is sounded by a signal that is 20 ms shorter 

than the multipath spread.  The main arrival from the second chirp signal appears before all the 

multipath propagations from the first taper off.  Therefore, cross-correlation produces large peaks 

that appear in the middle of the intensity profile for the first chirp, resulting in smeared output. 
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Figure 2-8: Ideal channel sounding.  Length of sounding signal (60 ms) > multipath spread (50 ms). 

 

 

 

Time 

Intensity 

Multipath Intensity Profile 

50 ms 50 ms 

Time 

Sounding Signals 

60 ms 

Frequency 

Time 

Frequency 

Multipath Arrivals 

60 ms 60 ms 

Overlap of multipath arrivals from first chirp 

with arrivals from second chirp produces no 

problem with cross-correlation as long as the 

autocorrelation of the sounding signal nearly 

approximates the Dirac delta function. 
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Figure 2-9: Correct channel sounding.  Length of sounding signal (10 ms) plus period of silence (50 

ms) > multipath spread (50 ms). 

 

Time 

Sounding Signals 

10 ms 

Frequency 

60 ms 

Time 

Intensity 

Multipath Intensity Profile 

50 ms 50 ms 

Multipath Arrivals 

Frequency 

Time 

60 ms 60 ms 

No overlap of multipath arrivals from first 

chirp with arrivals from second chirp means 

there is no chance of error in the resulting mul-

tipath intensity profile (in the absence of 

noise). Notice the lower SNR of the multipath 

intensity profile obtained with the shorter 

sounding signal. 
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Figure 2-10: Incorrect channel sounding.  Length of sounding signal (30 ms) < multipath spread (50 

ms). 

 The analysis of all the sounding signals presented in this section leads to the following 

conclusions.  A long clip of white noise exhibits the best autocorrelation properties.  A 50-ms clip 

still possesses good autocorrelation, but since the emitter cannot produce low frequencies, the 

white noise signal essentially becomes bandpass-filtered.  The differences between the bandpass-

filtered white noise of Figure 2-2 and the LFM chirp signal of Figure 2-3 are minor, with the 

LFM chirp signal being slightly better.  In addition, a LFM chirp signal is much less likely to ap-

pear randomly in any environment than a clip of white noise.  Therefore, the LFM chirp signal 

was used as the sounding signal in the experiments presented later in this chapter. 

30 ms 30 ms 
Time 

Sounding Signals 

Frequency 

60 ms 

Time 

Intensity 

Multipath Intensity Profile (incorrect) 

50 ms 50 ms 

60 ms 
Time 

Multipath Arrivals 

Frequency 

60 ms 60 ms 

Multipath arrivals from first chirp overlap with 

arrivals from second chirp, resulting in an in-

correct multipath intensity profile with no way 

to separate the correlation of each chirp. 
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2.2.2 Impulse Response 

The impulse response h(t) of a linear system is the response when the input to the system 

is equal to the delta function, or unit impulse.  The response of a linear system y(t) to an arbitrary 

input signal x(t) is found by convolving x(t) with h(t), as in 

                                  
 

  

 (2.2) 

or 

                                  
 

  

  (2.3) 

where τ is the time at which the impulse was applied.  Since the system is causal, the lower limit 

of the integral can be changed to 0, enabling y(t) to be expressed as 

                    
 

 

 (2.4) 

or in discrete form, which is more practical when working with digital communication systems, 

as 

                 

   

   

  (2.5) 

where M is the maximum of the number of samples in signals x and h, and the shorter signal is 

zero-padded to the length of the longer one. 

When the system‟s input and output signals are known, the process of solving for the im-

pulse response becomes the inverse of convolution, or deconvolution, which actually has no di-

rection definition in the time domain [Riad 1986].  However, in the frequency domain, deconvo-

lution is represented as 

                       (2.6) 

where X(j ), Y(j ), and H(j ) are the frequency-domain forms of  x(t), y(t), and h(t). 
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In practical situations, x(t) is a signal with limited bandwidth, causing X(j ) to be close or 

equal to zero at some frequencies.  In this case deconvolution results in an unstable filter.  Wiener 

deconvolution can be used to improve the accuracy of the resulting impulse response if the power 

spectral density of the noise in the channel is known.  Another solution, though computationally 

expensive, capitalizes on the fact that convolution is the equivalent to matrix multiplication of the 

form of Ax=b, where A is a matrix that represents the input to the system, b represents the output, 

and x is the system‟s impulse response.  This solution approaches deconvolution as a pseudoin-

verse
5
 problem.  This method experiences problems in the presence of noise, amplifying it pro-

portionally to the inverse of the singular values of A.  Performing the pseudoinverse operation 

with a tolerance close to the smallest singular value produces estimates with an acceptable rate of 

error. 

Because of the complications associated with deconvolution, cross-correlation, a measure 

of the likeness of two signals, is the method most often used to determine a system‟s impulse re-

sponse.  In the discrete case, the cross-correlation of signals x[t] and y[t] is defined by 

                     

     

   

  (2.7) 

where M is the maximum of the number of samples in signals x and y, the shorter signal is 

zero-padded to the length of the longer one, and the superscript asterisk indicates the com-

plex conjugate.  Cross-correlation has the obvious benefit of computational simplicity when 

compared to any method of deconvolution, especially when it is performed in the frequency 

domain using the fast Fourier transform. 

Assuming the channel is wide-sense stationary (WSS) uncorrelated scattering (US) 

                                                             
5 Pseudoinverse is the standard definition for the inverse of a matrix if the matrix is not square or singular.  A square 

matrix has an equal number of rows and columns.  A singular matrix is a square matrix that does not have a matrix 

inverse.  A matrix is singular iff its determinant is 0. 
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(combined, WSSUS) [Bello 1963], the time-varying complex-valued low-pass impulse response 

c(τ; t) of the underwater channel is captured via the following procedure: 

1. A sounding signal is repeatedly transmitted through the channel and recorded. 

2. The imaginary part of the reference sounding signal is obtained via the Hilbert transform. 

3. The received signal is cross-correlated with the complex conjugate of the reference signal. 

Additional steps are sometimes necessary during field tests, as seen in Section 2.5.4.  Figure 2-11 

provides MATLAB code that produces the time-varying impulse response of a channel. 

 

%% Computes impulse response for spreads up to 10 ms. 

 

seconds = 0.010; 

impulseResponse = zeros(numOfImpulseResponses, seconds*samplingRate); 

for i = 1:numOfImpulseResponses 

    snip = recordedSignal((i-1)*referenceSamples+1:i*referenceSamples); 

    temp = fftshift(xcorr(snip, conj(referenceSignal))); 

    impulseResponse(i,:) = temp(1:seconds*samplingRate); 

end 

 

% Normalize output. 

maxVal = max(max(abs(impulseResponse))); 

impulseResponse = impulseResponse / maxVal; 
 

Figure 2-11: MATLAB code to produce the time-varying impulse response of a channel. 

In summary, successive impulse response estimates of a linear system can be obtained via 

cross-correlation.  The procedure is practical, efficient, and accurate.  The impulse response esti-

mates obtained with this method fully describe the channel.  These estimates can be processed to 

provide various statistical views of the channel, presented in subsequent sections of this chapter. 

2.2.3 Scattering Function 

The scattering function gives the average power output of the channel as a function of 

time delay τ and Doppler frequency λ and is the basis for computing the remainder of the channel 

characterization functions described in this chapter.  Assuming that c(τ; t) is a WSS random 

process, the auto-correlation   of c(τ; t) is defined as 
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                    (2.8) 

where * denotes the complex conjugate.  Further assuming uncorrelated scattering – that the 

attenuation and phase shift of the channel at two separate path delays    and    are uncorrelated, 

the WSS assumption is strengthened to WSSUS, and 

                                                  (2.9) 

The scattering function is defined as the Fourier transform of          with respect to the    

parameter [Goldsmith 2005], as in 

                    
          

 

  

  (2.10) 

 

%% Computes scattering function. 

tauSamples = length(impulseResponse); 

lambdaSamples = numOfImpulseResponses; 

 

scatteringFunction = zeros(tauSamples, lambdaSamples * 2 - 1); 

for i = 1:tauSamples 

     temp = fftshift(fft(xcorr(impulseResponse(:,i)))); 

     scatteringFunction(i,:) = temp(end:-1:1); 

end 

 

% Normalize output. 

maxVal = max(max(abs(scatteringFunction))); 

scatteringFunction = scatteringFunction / maxVal; 

 

% Compute range of tau and lambda to represent time delay and Doppler 

% frequency for the axes. 

[tauSamples lambdaSamples] = size(scatteringFunction(1:end,:)); 

tau = (0:tauSamples-1) / samplingRate * 1000 - 1; 

lowerBound = floor(lambdaSamples / 2); 

upperBound = floor(lambdaSamples / 2); 

if (mod(lambdaSamples, 2) == 0) 

    upperBound = upperBound - 1; 

end 

f = -lowerBound:upperBound; 

lambda = (1 / chirpSignalSeconds / 2) * f / lowerBound; 

 

Figure 2-12: MATLAB code to produce the scattering function of a channel. 
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Figure 2-13: Relationships between scattering function and derived correlation functions and power 

spectra [Proakis 2008]. 

 Figure 2-12 provides MATLAB code that produces the scattering function of a channel.  

Figure 2-13 shows the relationships between the scattering function and its derived views, which 

are explained in greater detail in Sections 2.2.4 – 2.2.7. 

2.2.4 Multipath Intensity Profile 

The multipath intensity profile (MIP) or power delay profile P(τ) gives the average power 

output as a function of time delay τ.  It is computed by summing the power levels over the λ val-

ues of the scattering function, as in 

Multipath Intensity Profile Doppler Power Spectrum 

Spaced-Time Correlation Function Spaced-Frequency Correlation Function 
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                    (2.11) 

The MIP represents the delay spread of the channel.  In general, an underwater multipath channel 

causes a transmitted pulse to arrive at the receiver as distinct components spread out over time.  

In digital communication systems without equalization, the length of this delay spread places a 

lower bound on the duration of a symbol Ts, or an upper bound on the data rate of the system, that 

must be used in order to avoid channel-induced ISI.  Figure 2-14 provides MATLAB code to 

compute the MIP from the scattering function obtained from the code in Figure 2-12. 

 

%% Computes multipath intensity profile. 

mip = sum(abs(scatteringFunction')); 

 

% Compute range of tau in milliseconds to represent time delay. 

len = length(mip); 

tau = (0:len-1) * 1000/samplingRate - 1; 

 

% Normalize output. 

mip = mip / max(mip); 

 

Figure 2-14: MATLAB code to produce the multipath intensity profile of a channel. 

The mean excess delay and rms delay spreads of the MIP [Goldsmith 2005] are defined 

as 

                        
        

       
 (2.12) 

and 

               
 
        

 
      

       
   (2.13) 

where τ is the time delay of the multipath component within the MIP P(τ).  The threshold level 

might be set to -20 dB for computation of the mean excess delay and rms delay spreads, while the 

maximum excess delay is typically computed for multipath components within 10 dB of the max-

imum level [Rappaport 2002]. 
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2.2.5 Spaced-Frequency Correlation Function 

The Fourier transform of the MIP yields the spaced-frequency correlation function 

(SFCF), which provides a measure of the frequency coherence of the channel.  This function in-

dicates the coherence bandwidth of the channel, which is a statistical measure of the range of fre-

quencies over which the channel passes all spectral components with approximately equal gain 

and linear phase [Sklar 2001].  The SFCF essentially provides the same information as the MIP, 

except that the SFCF describes the view from the frequency domain.  If the data rate of the com-

munication system requires more bandwidth than the coherence bandwidth of the channel, fre-

quency-selective fading, another name for channel-induced ISI, would occur.  On the other hand, 

if the modulation bandwidth is less than the coherence bandwidth, frequency-nonselective or flat 

fading would occur.  Figure 2-15 provides the MATLAB code to produce the SFCF from the MIP 

of a channel. 

 

%% Computes spaced-frequency correlation function. 

sfcf = abs(fftshift(fft(mip))); 

 

% Normalize output. 

sfcf = sfcf / max(sfcf); 

 

% Compute range of frequencies for x-axis. 

numPoints = length(sfcf); 

lowerBound = floor(numPoints / 2); 

upperBound = lowerBound; 

if (mod(lambdaSamples, 2) == 0) 

    upperBound = upperBound - 1;  

end 

f = -lowerBound:upperBound; 

freq = (nyquistFreq / 2) * f / lowerBound; 

 

Figure 2-15: MATLAB code to produce the spaced-frequency correlation function of a channel. 

2.2.6 Doppler Power Spectrum 

The Doppler power spectrum provides the signal intensity as a function of the Doppler 

frequency λ.  It is found by summing the power of spectral components over the time delay τ of 

the scattering function, as seen in 
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                    (2.14) 

The range of frequencies over which the Doppler power spectrum is essentially nonzero is known 

as the Doppler spread of the channel.  By replacing τ with λ, Equations (2.12) and (2.13) can be 

reapplied to calculate the Doppler shift and spread.  The method, described in [Dessalermos 

2005], provides the average and rms delay spreads in Hz, as in 

         
        

       
 (2.15) 

and 

          
                 

       
   (2.16) 

where λ is the Doppler frequency in Hz and P(λ) is the power of the spectral component at fre-

quency λ.  Figure 2-16 provides the MATLAB code to produce the Doppler power spectrum of a 

channel. 

 

%% Computes Doppler power spectrum. 

dps = sum(abs(scatteringFunction)); 

 

% Compute range of frequencies for x-axis. 

numPoints = length(dps); 

lowerBound = floor(numPoints / 2); 

upperBound = lowerBound; 

if (mod(lambdaSamples, 2) == 0) 

    upperBound = upperBound - 1;  

end 

f = -lowerBound:upperBound; 

lambda = (1 / chirpSignalSeconds / 2) * f / lowerBound; 

 

% Calculate Doppler shift and spread. 

sumValue = sum(dps); 

overallShift = sum(lambda .* dps) / sumValue; 

overallSpread = sqrt(sum((lambda - overallShift).^2 .* dps) / sumValue); 

         

% Smooth and normalize Doppler power spectrum before plotting. 

dps = smooth(dps, 3); 

dps = dps / max(dps); 

 

Figure 2-16: MATLAB code to produce the Doppler power spectrum of a channel. 



34 
 

 
 

If the Doppler spread fd > W, where W is the bandwidth required for modulation, the 

channel is referred to as fast fading, since the channel‟s conditions change within the duration of 

a single symbol.  Such channels typically require noncoherent or differentially coherent modula-

tion [Sklar 2001].  If W > fd, the channel is referred to as slow fading.  If the baseband signal 

bandwidth is much greater than fd, the effects of Doppler spread at the receiver are negligible 

[Rappaport 2002]. 

2.2.7 Spaced-Time Correlation Function 

The Fourier transform of the Doppler power spectrum provides the spaced-time correla-

tion function (STCF), which specifies the extent to which there is correlation between the chan-

nel‟s response to two sinusoids sent at different times.  It provides the channel‟s coherence time 

Tc, a measure of the expected time duration over which the channel‟s response is essentially inva-

riant [Sklar 2001].  The STCF presents the same data as the Doppler power spectrum, except that 

is described from the time domain.  If Ts > Tc, fast fading degradation occurs.  If Tc > Ts, the 

channel exhibits slow fading.  Figure 2-17 provides the MATLAB code to produce the STCF 

from the Doppler power spectrum of a channel. 

 

%% Computes spaced-time correlation function. 

stcf = abs(fftshift(fft(dps))); 

 

% Normalize output. 

stcf = stcf / max(stcf); 

 

% Compute range of times for x-axis. 

numPoints = length(stcf); 

lowerBound = floor(numPoints / 2); 

upperBound = lowerBound; 

if (mod(lambdaSamples, 2) == 0) 

    upperBound = upperBound - 1;  

end 

t = -lowerBound:upperBound; 

time = (totalRecordedSeconds / 2) * t / lowerBound; 

 

Figure 2-17: MATLAB code to produce the spaced-time correlation function of a channel. 



35 
 

 
 

2.3 Fading Distributions 

In shallow water channels, a transmitted signal will arrive at the receiver at slightly dif-

ferent times via multiple paths.  If a single pulse is transmitted over a multipath fading channel, it 

will appear as a pulse train at the receiver, with each pulse in the train corresponding to a distinct 

multipath component [Goldsmith 2005] which may or may not include the line-of-sight compo-

nent.  In wireless channels, the amplitudes, phase shifts, and number of multipath components 

vary if pulses are transmitted from a moving transmitter.  Thus, they combine at the receiver ei-

ther constructively or destructively to form a resultant signal that can exhibit significant fluctua-

tions in amplitude and phase.  Furthermore, (wind-induced) surface waves, current, and changes 

in the salinity and temperature profile contribute to the time-varying nature of a shallow water 

channel, which can also lead to amplitude and phase fluctuations of the received signal, even with 

stationary apparatus. 

There are three distributions commonly used to statistically model the fading channel, 

namely Rayleigh [Strutt 1880], Rician [Rice 1944, 1945], and Nakagami-m [Nakagami 1960].  

Rayleigh fading occurs when there are many objects in the environment that scatter the signal 

before it arrives at the receiver.  When the phase of the nth multipath component Φn(t) is uniform-

ly distributed, the in-phase and quadrature components rI(t) and rQ(t) are both zero mean Gaus-

sian random variables.  If the variance is assumed to be σ
2
 for both rI and rQ, the signal envelope 

                
        

     (2.17) 

is Rayleigh distributed, as given by the pdf 

      
 

  
 
 
   

   
 
      (2.18) 

where 2σ
2 
is the average received power of the signal [Goldsmith 2005]. 

http://en.wikipedia.org/wiki/Scattering
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If the channel has a fixed line-of-sight (LOS) component, rI(t) and rQ(t) are not zero-

mean variables.  In this case, the received signal is comprised of the superposition of a complex 

Gaussian component and a LOS component.  The signal envelope is then shown to have a Rician 

distribution, given by 

         
  

  
 
 

  
 
  
     

   
 
       (2.19) 

where I0 is the zero-order modified Bessel function of the first kind, 2σ
2
 is the average power in 

the non-LOS multipath component, and s
2
 is the power in the LOS component [Goldsmith 2005]. 

 The Rician K-factor is defined as the ratio of signal power in dominant component over 

the (local-mean) scattered power [Linnartz 2009a], as in 

  
  

   
  (2.20) 

When K = 0 Rayleigh fading is present, and when K = ∞ the channel exhibits no fading.  Thus, a 

small K implies severe fading, and a large K implies relatively mild fading [Goldsmith 2005]. 

 Since some experimental data cannot be described by the Rayleigh and Rician distribu-

tions, the more general Nakagami-m distribution was developed.  The Nakagami-m distribution is 

given by 

      
        

      
 
 
    

 
 
        (2.21) 

where   is the average received power and Г(∙) is the Gamma function.  The Nakagami-m distri-

bution can model a range of fading channels from one-sided Gaussian fading (m = 1/2, worst-case 

fading) to nonfading (m = ∞).  m = 1 is a special case, equivalent to Rayleigh fading [Nakagami 

1960].  Some papers state that the Rician distribution can be closely approximated by the Naka-

gami-m distribution when m > 1; however, other references including [Linnartz 2009] and [Ya-

coub 2005] argue against that claim. 
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 In practice, the fading characteristics of the channel can be determined in two ways.  For 

narrowband
6
 fading, a single sinusoid can be transmitted through the channel.  The received sig-

nal should be run through a bandpass filter before computing its envelope.  The amplitude values 

of the envelope can then be fit to various distributions to determine the best match.  For wideband 

fading, the fluctuation in the amplitudes of a multipath component at time delay τ in the complex-

valued impulse response can be fit to the various distributions.  It is possible for each multipath 

component to exhibit a different fading distribution. 

2.4 Underwater Channel – Office Test Environment 

Channel characterization is not a simple procedure.  Typically it involves taking two 

boats, each equipped with power supplies, computers, an emitter and/or hydrophones, and a crew 

of scientists, out to a body of water to gather data.  While this procedure is necessary for thorough 

characterization of a real underwater channel, it is cost-prohibitive for constructing and tweaking 

the channel-sounding experiment.  Therefore, a simple underwater channel can be created out of a 

large tub filled with tap water and used for experiment design and prototyping.  While it may not 

exhibit the time-varying complexities found in real shallow water channels, it does possess a sig-

nificant amount of multipath propagation due to the close proximity of the hard walls of the tub. 

In the Lieb building at Stevens Institute of Technology, a testbed has been created with 

the following components: Rubbermaid® storage tub, OCEANEARS DRS-4 emitter [OCEA-

NEARS 2010], OCEANEARS DRS-2 hydrophone, custom-built fixed-gain amplifier, Lenovo 

T60p laptop, and an M-Audio Transit USB recorder.  Only one laptop was used in the experi-

ment, which simultaneously played and recorded the sounding signals.  To ensure there was no 

internal leakage of the playback signal in the microphone input, the T60p‟s onboard sound card 

                                                             
6 Narrowband refers to a situation where the bandwidth of the transmitted signal is less than the channel's coherence 

bandwidth. 
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was used solely for transmission while the external M-Audio device was used for recording.  The 

sounding signals were played in Winamp 5.52 and recorded with Adobe Audition 3.0.  The 

OCEANEARS devices were affixed to the bottom of the table with duct tape and oriented so that 

the large, flat surface of each transducer was facing the device on the opposite side of the tub.  

The two transducers were separated by about 14 inches.  Figure 2-18 depicts the layout of the 

office test environment. 

 
Figure 2-18: Underwater channel testbed inside office. 

 

2.4.1 Sounding Signal 

The sampling rate was set to 48 kHz for all experiments conducted in the office.  A 50-

ms LFM chirp from 0 – 24 kHz was repeatedly used to sound the channel.  Figure 2-19 shows the 

autocorrelation function of the sounding signal in dB scale. 
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Figure 2-19: Envelope of autocorrelation of LFM Chirp 0-24 kHz, 50.0 ms. 

 

2.4.2 Initial Tub Configuration 

 
Figure 2-20: Initial configuration of underwater channel in office setup. 
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The tub, which is about 20.5 inches wide and 15.5 inches deep, was initially filled with 

approximately 9.5 inches of water, as seen in Figure 2-20.  The device on the left is the OCEA-

NEARS DRS-4 emitter; the one on the right is the OCEANEARS DRS-2 hydrophone. 

2.4.2.1 Impulse Response 

The impulse response of the tub over a span of 5 seconds appears in Figure 2-21.  Each 

second on the graph contains 20 impulse response estimates.  Since the channel is time-invariant, 

all impulse response estimates are nearly identical.  Thus, when the collection of estimates is 

viewed as a scaled image, it appears as a series of vertical columns.  Columns in red represent 

strong correlation at a specific time delay, while columns in blue represent low correlation.  Val-

ues between the extremes are displayed in various colors of the spectrum present in the color bar 

to the right of the graph. 

 
Figure 2-21: Successive impulse response estimates of office test tub. 

 



41 
 

 
 

2.4.2.2 Scattering Function 

 
Figure 2-22: Scattering function of office test tub. 

The scattering function depicts significant multipath arrivals occurring for approximately 

2.5 ms.  There is no Doppler shift, since the devices were fixed, and no measureable spreading in 

the frequency domain. 

2.4.2.3 Multipath Intensity Profile 

The delay spread of the channel appeared rather unconventional with many strong multi-

path components.  While it is possible for an arrival of lesser intensity to precede the one with the 

strongest amplitude, it is not common to find repeating sequences of weaker and then stronger 

arrivals, like those shown in the multipath intensity profile in Figure 2-23.  This phenomenon is 

caused by the acoustic waves being reflected off the walls of the tub.  Moreover, since the tub is 

constructed out of hard plastic, very little acoustic energy is absorbed.  Thus, the waves were re-

flected several times before losing intensity. 
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Figure 2-23: Multipath intensity profile of office test tub. 

 

 

 

Table 2-1: Delay Spread (ms) of Multipath Intensity Profile Computed with -20 dB Threshold 

Mean Excess Delay RMS Delay Spread Maximum Excess Delay (-10 dB) 

1.1513 1.0945 2.6042 

 

 

Table 2-2: Doppler Shift and Spread (Hz) of Strong Multipath Arrivals 

 Time Delay (ms) Intensity Shift Spread 

Arrival 1 0.000 0.6719 0.0000 0.0000 

Arrival 2 0.146 1.0000 0.0000 0.0000 

Arrival 3 0.458 0.2734 0.0000 0.0000 

Arrival 4 0.625 0.4477 0.0000 0.0000 

Arrival 5 0.750 0.6346 0.0000 0.0000 

Arrival 6 0.854 0.7692 0.0000 0.0000 

Arrival 7 1.313 0.3098 0.0000 0.0000 

Arrival 8 1.708 0.2284 0.0000 0.0000 

Arrival 9 1.896 0.2502 0.0000 0.0000 

Arrival 10 2.542 0.2393 0.0000 0.0000 
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2.4.2.4 Spaced-Frequency Correlation Function 

 
Figure 2-24: Spaced-frequency correlation function of office test tub. 

 

 

Table 2-3: Coherence Bandwidth (Hz) 

-3 dB -6 dB -10 dB 

181 363 544 

 



44 
 

 
 

2.4.2.5 Doppler Power Spectrum 

 
Figure 2-25: Doppler power spectrum of office test tub. 

 

 

Table 2-4: Overall Doppler Shift and Spread (Hz) 

Shift Spread 

0.000 0.000 

 

2.4.2.6 Spaced-Time Correlation Function 

 

Table 2-5: Coherence Time (ms) 

0.5 (-3 dB) 0.25 (-6 dB) 0.1 (-10 dB) 

∞ ∞ ∞ 
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Figure 2-26: Spaced-time correlation function of office test tub. 
 

2.4.2.7 Analysis and Implications for Communication 

The analysis of the channel sounding data, presented in Sections 2.4.2.1 through 2.4.2.6, 

describes a channel that is time-invariant yet exhibits significant multipath propagation.  A chan-

nel that is truly as time-invariant as a tub does not occur in nature, so this type of environment 

should be used only to test underwater communications systems against a channel with signifi-

cant delay spread.  Consequently, a zero-forcing equalizer can be employed.  This type of equa-

lizer works by inverting the estimated channel response and applying the result to the incoming 

signal stream.  More complex adaptive filters can be used, but this particular channel won‟t pro-

vide any interesting test cases. 

The amount of delay spread is directly proportional to the duration of a symbol Ts used in 

a communication system that does not employ an equalizer.  Some authors define Ts in terms of 

the maximum excess delay Tm [Sklar 2001], while others use the rms delay spread [Rappaport 
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2002].  Assuming Tm is used, if Tm > Ts, the channel exhibits frequency-selective fading, which 

results in channel-induced ISI.  In this case, the communication system will need to perform 

equalization to mitigate the distortion.  If Ts > Tm, the channel exhibits flat fading, which does not 

result in ISI.  Tm = 2.6042 ms, reported in Table 2-1, implies the tub system can transmit up to 

about 384 symbols per second and still avoid ISI.  If the rms delay spread      is used in the cal-

culation, when Ts       the channel induces only negligible ISI.  Assuming Ts is within an order 

of magnitude of       Ts       implies Ts > 10    , and there will be some ISI which, depending 

on the system, may or may not significantly degrade performance [Goldsmith 2005].  Using the 

rms delay spread     , 

    
  

     

   
    
   

 

   
         

   
 

             

    
 

  
                        

which is about one-fourth the value computed using the maximum excess delay.  Regardless of 

which method is used, it is clear that the delay spread of the channel significantly decreases the 

effective data rate of this channel to a maximum of at most a few hundred symbols per second. 

Time-spreading can also be viewed from the frequency domain.  The SFCF yields the 

coherence bandwidth f of the channel.  If W > f, where W is the bandwidth required for modula-

tion, the channel imposes frequency-selective degradation.  If f > W, the channel exhibits flat fad-

ing.  No universal relationship exists between the coherence bandwidth and delay spread [Sklar 

2001; Rappaport 2002], since the exact relationship is a function of specific channel impulse res-
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ponses and applied signals [Rappaport 2002].  It is also important to note that while the rms delay 

spread calculation may predict some symbol rate, the actual bandwidth required by a certain type 

of modulation at that symbol rate may exceed the coherence bandwidth of the channel.  There-

fore, the achievable symbol rate for modulation within the given bandwidth may be even less than 

predicted. 

2.4.2.8 Details of Calculation 

 
Figure 2-27: First attempt at spaced-time correlation function of office test tub. 

The first attempt at computing the STCF of the office test tub produced the result shown 

in Figure 2-27.  It reveals a -3 dB coherence time of approximately 2.5 seconds, which is far 

shorter than the theoretical value of infinity expected in a time-invariant system.  From viewing 

the successive impulse response estimates in Figure 2-21, it appears that the amplitudes of each 

component in the impulse response remain constant over the entire duration of the test.  There-

fore, one should expect the Doppler power spectrum to be a delta function, with all the power 

occurring at the 0 Hz lambda frequency.  The Fourier transform of such a delta function would 
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yield a flat STCF, with correlation values of 1 across the entire ∆t x-axis.  However, the original 

results contradict these expectations. 

 In order to determine where the model breaks down, it is necessary to view the output of 

each step in a controlled experiment.  The magnitude values of the largest component of the im-

pulse response can be plotted to verify that they are approximately equal.  Since the impulse re-

sponse is complex-valued, the magnitude of each sample is given by 

                
    

   (2.22) 

where xr denotes the real component and xi the imaginary component of the complex number x.  

The mean value of the normalized magnitude over the 5-second test is 0.998 with a standard dev-

iation of 0.001.  Thus, the fluctuations are indeed negligible, confirming a time-invariant channel. 

 
Figure 2-28: Magnitude of the strongest impulse response tap over time. 

The next step in the verification process is to analyze the output of the scattering function 

at the iteration of the loop pertaining to the strongest impulse response tap.  The algorithm in-
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volves taking for the Fourier transform of the autocorrelation of the strongest impulse response 

tap (across all 5 seconds of measurements).  The result produces the Doppler power spectrum for 

a given multipath component.  Figure 2-29 shows the Doppler power spectrum of the strongest 

multipath arrival in the tub.  Note the small side lobes at the bottom of the spike.  They are an 

artifact of computing the FFT with a rectangular window, which has poor sideband attenuation of 

only -13 dB [NI 2010c].  Figure 2-29 depicts the Doppler power spectrum of the strongest multi-

path arrival in linear scale; Figure 2-30 depicts it in dB scale. 

 
Figure 2-29: Doppler power spectrum of strongest multipath arrival. 
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Figure 2-30: Doppler power spectrum of strongest multipath arrival in dB scale. 

 It is not useful to apply a smoothing window to the signal before taking its Fourier trans-

form.  While windowing affords greater side lobe attenuation, it increases the width of the main 

lobe, thus decreasing the frequency resolution.  The increase in the width of the main lobe with 

attenuated side lobes has a similar effect on the resulting STCF as a narrow main lobe with signif-

icant side lobes – they yield a coherence time that is shorter than expected.  In the case of this 

time-invariant channel, it proves useful to simply eliminate the side lobes by zeroing out any part 

of the scattering function that is less than 13 dB of the intensity of the strongest component. 

 The main point in describing this observation and all the intermediate calculations is to 

show that the WSSUS model used to describe the properties of a channel is just that – a model.  

While artifacts of the computational methods are often not described in literature, they can have 

significant effects on the results.  The derived characterization functions and predictions about 

symbol rates must be viewed as rough approximations. 
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2.4.3 Modified Tub Configuration 

 

 
Figure 2-31: Final configuration of underwater channel in office setup.  The walls of the tub were 

lined with cardboard and the bottom was covered with sand to reduce multipath propagation. 

 

Because of the extreme amount of multipath propagation present in the initial configura-

tion of the underwater channel in the office testbed, a second attempt was required to produce an 

artificial channel that more realistically simulates natural bodies of water.  In order to reduce the 

number and intensity of reflections, the walls of the tub were lined with cardboard and the bottom 

was covered with sand.  Figure 2-31 depicts the altered configuration of the tub, which was used 

for all subsequent measurements in this chapter and the communication experiments discussed in 

Chapter 3. 
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2.4.3.1 Impulse Response 

 
Figure 2-32: Successive impulse response estimates of modified office test tub. 

 

2.4.3.2 Scattering Function 

 
Figure 2-33: Scattering function of modified office test tub. 
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2.4.3.3 Multipath Intensity Profile 

 
Figure 2-34: Multipath intensity profile of modified office test tub. 

 

Table 2-6: Delay Spread (ms) of Multipath Intensity Profile Computed with -20 dB Threshold 

Mean Excess Delay RMS Delay Spread Maximum Excess Delay (-10 dB) 

0.1609 0.2327 0.2917 

 

Table 2-7: Doppler Shift and Spread (Hz) of Strong Multipath Arrivals 

 Time Delay (ms) Intensity Shift Spread 

Arrival 1 0.000 1.0000 0.0000 0.0000 

Arrival 2 0.188 0.4026 0.0000 0.0000 
 

2.4.3.4 Spaced-Frequency Correlation Function 

Table 2-8: Coherence Bandwidth (Hz) 

-3 dB -6 dB -10 dB 

1633 6170 11251 
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Figure 2-35: Spaced-frequency correlation function of modified office test tub. 

 

2.4.3.5 Doppler Power Spectrum 

 
Figure 2-36: Doppler power spectrum of modified office test tub. 
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Table 2-9: Overall Doppler Shift and Spread (Hz) 

Shift Spread 

0.000 0.000 

 

2.4.3.6 Spaced-Time Correlation Function 

 
Figure 2-37: Spaced-time correlation function of modified office test tub. 

 

2.4.3.7 Analysis and Implications for Communication 

The modified office test tub possesses a much more realistic multipath intensity profile.  

There is one main arrival, followed by several reflections, only one of which is strong.  There are 

no longer groups of weaker arrivals followed by a strong component.  As a result of the reduced 

delay spread, the channel permits the transmission of signals with higher data rates.  Using the 

maximum excess delay as the lower bound for the duration of a symbol, the system can transmit 

up to about 3428 symbols per second and still avoid ISI.  The rms delay spread approach produc-

es a much smaller rate of only approximately 430 symbols per second. 
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2.5 Underwater Channel – Hudson River Estuary 

2.5.1 Experiment 

 
Figure 2-38: Test site for channel sounding experiment. 

The Maritime Security Laboratory (MSL) at Stevens Institute of Technology conducted a 

field test on August 21, 2008, in the Hudson River estuary adjacent to its campus, as shown in 

Figure 2-38.  Two boats were used, one for emitting signals – the Phoenix – and the other for re-

cording them – the Savitsky.  The Phoenix was also equipped with a hydrophone to record the 

emitted signals at a distance of 1 meter from the transducer for later reference.  The computer 

system on the Phoenix used the NI USB-6221 [NI 2010b] data acquisition (DAQ) board; the sys-

tem on the Savitsky utilized the NI PCI-6123 [NI 2010a].  All reference and recorded signals 

were created at 200 ksamples/second.  A custom ceramic transducer emitted the signals, while 

ITC-6050C hydrophones [ITC 2010] were used for reception. 

The channel was about 3 meters deep, and sounding experiments were performed at dis-

tances of 505 and 200 meters.  The emitter was placed 1 meter below the surface; hydrophones 



57 
 

 
 

were placed 60 cm from the bottom.  The boats were anchored and motors turned off while data 

were gathered.  Each test consisted of taking CTD
7
 measurements prior to channel sounding, re-

cording 30 seconds of ambient noise, playing a comb signal containing 5 sinusoidal components 

– 35, 45, 60, 75, and 85 kHz – for 1 minute, and repeatedly emitting a 50-ms LFM chirp signal 

spanning 20-100 kHz for 30 seconds. 

2.5.2 Sounding Signal 

Analysis of prior measurements in the Hudson River estuary revealed significant noise 

below 20 kHz and a very short coherence time, which facilitated the choice of sounding signal for 

this test.  As stated in Section 2.2.1, the LFM chirp signal is a good choice for a sounding signal, 

since it possesses good autocorrelation properties as to closely approximate the Dirac delta func-

tion.  It is known that the best autocorrelation function for a LFM chirp signal is obtained when 

chirping from 0 Hz up to the Nyquist frequency.  However, because of the Hudson‟s noise in 

lower frequency bands and the emitter‟s lack of low frequency response, 20 kHz was chosen as 

the starting frequency for the chirp signal. 

2.5.3 Environmental Conditions 

The field test in the Hudson River estuary was conducted on the afternoon of August 21, 

2008.  Environmental conditions were recorded at the Castle Point Buoy, at 40.74348° latitude 

and -74.02263° latitude, and downloaded upon the completion of the experiment from the website 

for the Urban Ocean Observatory at the Center for Maritime Systems [NYHOPS 2009].  The 505-

meter test was started at 5:14 P.M.  At that time, the temperature was 76°F with 55% relative hu-

midity, the wind speed was about 10 knots, and the wind direction was about 159° [WIS 2009].  

Medwin‟s expression for sound velocity in meters/second  

                                                             
7 A CTD – an acronym for Conductivity, Temperature, and Depth – is a sensor used to determine essential physical 

properties of sea water. 
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(2.23) 

where D is the depth in meters, S is the salinity in parts per thousand (ppt), and T is the tempera-

ture in degrees Celsius [Urick 1996], was applied to the CTD measurements taken at the start of 

the test.  Other expressions for sound velocity exist; however, the salinity values obtained in the 

test fall outside the range of acceptable input values for these expressions.  Figure 2-39 shows the 

temperature, salinity, and derived sound velocity of the water column in the 505-meter test.  Since 

the numeric difference between practical salinity unit (psu) and ppt is small, psu values were used 

in place of ppt values while generating this graph. 

 

Figure 2-39: Sound velocity profile for 505-meter channel. 

The 200-meter test was started at 6:04 P.M.  At that time, the temperature was 75°F with 

57% relative humidity, the wind speed was about 8 knots, and the wind direction was still about 

159°.  Following the same procedure as before, the CTD measurements resulted in the sound ve-

locity profile shown in Figure 2-40. 
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Figure 2-40: Sound velocity profile for 200-meter channel. 

 
Figure 2-41: PSD of ambient noise in Hudson River estuary. 

Ambient noise was recorded for 30 seconds during both tests before any signals were 

emitted.  The power spectral density (PSD) of noise was estimated via a Welch periodogram 

technique based on a 256-point FFT together with a Hanning window and no overlap.  Figure 
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2-41 shows the PSD of noise in the Hudson River estuary captured at 5:24 and 6:42 P.M. 

2.5.4 Time-Variant Impulse Response 

The time-varying complex-valued low-pass impulse response c(τ; t) of the underwater 

channel was captured via same procedure as outlined in Section 2.2.2 but with two additional 

steps.  The complete method is as follows: 

1. The 50-ms chirp signals were recorded 1 meter from the emitter and either 200 or 505 me-

ters away (depending on the test) where the Savitsky was anchored. 

2. The received signal and 1-meter reference signal were run through a 10
th
 order high-pass 

Butterworth filter at 20 kHz to eliminate out-of-band noise. 

3. One chirp was extracted from the 1-meter reference signal, accurate to the sample. 

4. The imaginary part of the reference chirp signal was obtained via the Hilbert transform. 

5. The received signal was cross-correlated with the complex conjugate of the reference chip 

signal. 

There are several experimental issues worth describing in more detail.  The standard 

technique is to apply matched filtering to the received signal with the original waveform sent to 

the emitter.  While this approach results in the best autocorrelation function for a given chirp sig-

nal, it unfairly distributes weight to frequencies that were not emitted with equal amplitudes, as in 

the case when the frequency response of the emitter is not flat.  In this situation, the derived im-

pulse response estimates contain higher levels of noise correlation. 
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Figure 2-42: PSD of chirp signal at 1m (frequency response of emitter). 

The custom transducer used in this experiment does not exhibit a flat response over the 

20-100 kHz band.  Figure 2-42 shows the PSD of the chirp signal that it emitted.  The envelope of 

the autocorrelation function of the original chirp waveform with a flat response has a narrow 

main lobe and negligible side lobes, as shown in Figure 2-43.  On the other hand, as shown in 

Figure 2-44, the autocorrelation function of the chirp signal produced by the custom transducer 

has a wider main lobe and stronger side lobes, averaging about -40 dB across the 10 ms spread.  

However, since the signal was received with high SNR (19 dB < SNR < 58 dB), the distortion 

introduced by the side lobes on the impulse response estimates was minimal. 
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Figure 2-43: Envelope of original chirp waveform autocorrelation function. 

 
Figure 2-44: Envelope of emitted chirp waveform autocorrelation function. 

Figure 2-45 shows 30 seconds of impulse response estimates c(τ; t) of the Hudson River 

estuary at the 200-meter distance.  Fading is present, but it appears that there are one or possibly 

two line-of-sight arrivals.  Figure 2-46 shows the time evolution of impulse response estimates 

observed over the 505-meter channel.  While there is significant fluctuation in the amount of cor-
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relation, the strongest correlation always occurs within a 0.5-ms window.  Three multipath com-

ponents are present, though each has been subjected to periods of deep fading.   

 
Figure 2-45: Successive time-variant impulse response estimates of Hudson at 200m. 

 
Figure 2-46: Successive time-variant impulse response estimates of Hudson at 505m. 
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2.5.5 Scattering Function 

 
Figure 2-47: Scattering function of Hudson at 200m. 

 
Figure 2-48: Scattering function of Hudson at 505m. 
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2.5.6 Multipath Intensity Profile 

 
Figure 2-49: Multipath intensity profile of Hudson at 200m. 

 
Figure 2-50: Multipath intensity profile of Hudson at 505m. 
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The MIP of the 200-meter channel, seen in Figure 2-49, appears to have only one arrival.  

However, upon enlarging the region around the peak, it is evident that there are two distinct arriv-

als separated by 25 µs.  The MIP of the 505-meter channel, shown in Figure 2-50, reveals three 

distinct arrivals spanning slightly less than 0.5 ms. 

Table 2-10: Delay Spread (ms) of Multipath Intensity Profile Computed with -20 dB Threshold 

 Mean Excess Delay RMS Delay Spread Maximum Excess Delay (-10 dB) 

200m 0.0907 0.1478 0.1800 

505m 0.1789 0.1636 0.4150 

 

 

Table 2-11: Doppler Shift and Spread (Hz) of Strong Multipath Arrivals 

 200m 505m 

 Time (ms) Intensity Shift Spread Time (ms) Intensity Shift Spread 

Arrival 1 0.000 0.8136 -0.1945 2.6790 0.000 1.0000 -0.3642 2.8315 

Arrival 2 0.025 1.0000 -0.2588 2.6948 0.105 0.4033 -0.3667 3.0616 

Arrival 3 – – – – 0.205 0.5041 -0.4556 3.0057 

 

2.5.7 Spaced-Frequency Correlation Function 

 
Figure 2-51: Spaced-frequency correlation function of Hudson at 200m. 
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Figure 2-52: Spaced-frequency correlation function of Hudson at 505m. 

Table 2-12: Coherence Bandwidth (Hz) 

 -3 dB -6 dB -10 dB 

200m 2331 8160 12490 

505m 1166 1665 2165 

 

Since the multipath spread of the channel is longer at 505 meters than it is at 200 meters, 

the coherence bandwidth of the 505-meter channel is less than that of the 200-meter channel.  In 

fact, for the correlation between two sinusoids to remain within 3 dB of each other (correlation ≥ 

0.5), the coherence bandwidth is reduced by half when going from 200 meters to 505 meters.  As 

an aside, it should be noted that the correlation tapers off in last 10 kHz on each side of the graph 

in both graphs.  This property is expected, since the channel was sounded over 80 kHz of the 100 

kHz made possible with the 200 kHz sampling rate.  Thus, there is no data for the remaining 20 

kHz. 
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2.5.8 Doppler Power Spectrum 

 
Figure 2-53: Doppler power spectrum of Hudson at 200m. 

 
Figure 2-54: Doppler power spectrum of Hudson at 505m. 
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Table 2-13: Overall Doppler Shift and Spread (Hz) 

 Shift Spread 

200m -0.2357 3.3231 

505m -0.3381 3.3843 

 

There is nothing remarkable about the Doppler power spectrum at either distance.  The 

majority of the power is virtually centered on the 0 Hz lambda frequency, with some power dis-

tributed in the negative frequency range. 

 

2.5.9 Spaced-Time Correlation Function 

 
Figure 2-55: Spaced-time correlation function of Hudson at 200m. 
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Figure 2-56: Spaced-time correlation function of Hudson at 505m. 

Table 2-14: Coherence Time (ms) 

 0.5 (-3dB) 0.25 (-6dB) 0.1 (-10 dB) 

200m 50 400 699 

505m 50 150 500 

 

The coherence time of the channel at either distance is extremely short.  In fact, the dura-

tion over which two sinusoids remain within 3 dB of each other (correlation ≥ 0.5) is only 50 ms. 

 

2.5.10 Fading Characteristics 

The comb signal containing 5 sinusoids – 35, 45, 60, 75, and 85 kHz, where the 

frequencies were chosen so that no harmonics overlap – has been analyzed to determine the type 

of narrowband fading that is present in the Hudson River estuary via the following procedure: 

1) A 10
th
 order band-pass Butterworth filter with a passband of 2 kHz was applied to each of 

the tones. 

2) The analytic signal x was obtained from the filtered data via the Hilbert transform. 

3) The envelope of the signal was computed by taking its magnitude, as in Equation (2.22). 



71 
 

 
 

4) The fading envelope was normalized to zero mean. 

Figure 2-57 shows the channel-induced amplitude fluctuations of the five sinusoidal 

components in the comb signal as well as the strongest component of the successive impulse re-

sponse estimates.  The fluctuations in the received signal level are huge, especially in the lower 

frequency bands, varying more the 80 dB during in a 10-second interval.  The fluctuations in the 

amplitude of the wideband signal are less severe, with differences of 20 dB over 30 seconds.  

Since the channel was sounded 20 times per second, 30 seconds yields 600 impulse response es-

timates and, therefore, 600 amplitude values.  Even though 30 seconds is three times greater than 

the analyzed section of the comb signal, it must be understood that the 10-second comb signal 

contains 2 million amplitude values and, hence, affords much greater resolution. 
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Figure 2-57: Fading envelopes in Hudson at 200m. 
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Figure 2-58: Fading envelopes in Hudson at 505m. 

Figure 2-58 shows the amplitude fluctuations over the 505-meter channel.  The severity 

of the fading is much stronger at the increased distance, especially with the 35 kHz and 45 kHz 
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sinusoids.  Even the wideband signal exhibits fluctuations of some 40 dB, although as in the 200-

meter channel, it still fared far better than any narrowband component. 

 
Figure 2-59: CDF for fading measurements at 

200m. 

 
Figure 2-60: CDF for fading measurements at 

505m. 

 

Figures 2-59 and 2-60 show the cumulative distribution of amplitude levels of each of the 

5 sinusoids taken over the full minute of data.  It appears that at both distances the channel af-

fected all the sinusoids equally, with approximately a tenfold decrease in the probability for every 

10 dB decrease in the signal level, at least for down to -50 dB relative to the mean level.  It 

should be noted, though, that the confidence intervals for points below -50 dB become signifi-

cantly reduced, as there are relatively few low-amplitude samples in the 1-minute recording. 

Maximum likelihood estimation was used to fit the data to the Rayleigh, Rice, and Naka-

gami-m distributions, which are commonly used to describe fading channels, and to other less 

likely potential distributions, including gamma, beta, and lognormal.  The goodness of fit was 

tested with three different metrics.  When working with the comb signal, the histogram of signal 

levels was divided into 100 bins.  The histogram of the strongest impulse response tap, however, 

was divided into only 40 bins because there were significantly fewer data points.  P is the proba-

bility distribution of the measurements; Q is the probability distribution of the fit.  The first me-

tric is Kullback-Leibler divergence [Kullback 1951], DKL, defined as 
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  (2.24) 

The second metric is the Bhattacharyya distance [Bhattacharyya 1943], DB, defined as 

                   (2.25) 

where BC is the Bhattacharyya coefficient,            .  The third and final metric, DCRM, is 

one based on the Bhattacharyya coefficient, proposed by Comaniciu, Ramesh, and Meer [Com-

aniciu 2003], defined as 

                 (2.26) 

Figures 2-61 and 2-62 show the histograms of the measurements and the curves corres-

ponding to each of the six distributions for the 200-meter and 505-meter channels, respectively.  

In each figure, the first five subplots depict the probability distribution functions that correspond 

to the fading of each narrowband sinusoidal component in the comb signal.  The last subplot 

shows the fading of strongest component of the successive impulse response estimates.  

Tables 2-15 through 2-26 provide the values of the three metrics as well as the distribu-

tion-specific parameters obtained while fitting the distributions to the data.  For each of the three 

metrics, lower values indicate less divergence from the actual data.  In the tables, the best match 

for each metric is highlighted in yellow. 
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Figure 2-61: PDF of measurements and fits at 200m. 
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Table 2-15: Goodness of Fits, 200m, 35 kHz Sinusoid 

 DKL DB DCRM Parameters 

Beta 0.0964 0.0138 0.0974 [alpha = 4.2381, beta = 54.8056] 

Gamma 0.1028 0.0161 0.1054 [alpha = 4.5298, beta = 0.0159] 

Lognormal 0.4209 0.0434 0.1722 [mu = -2.7483, sigma = 0.5269] 

Nakagami-m 0.0497 0.0051 0.0591 [m = 1.3867, omega = 0.0061] 

Rayleigh 0.0774 0.0183 0.1123 [sigma = 0.0554] 

Rice 0.0395 0.0026 0.0423 [s = 0.0602, sigma = 0.0354, K = 1.4411] 

Table 2-16: Goodness of Fits, 200m, 45 kHz Sinusoid 

 DKL DB DCRM Parameters 

Beta 0.0771 0.0189 0.1142 [alpha = 4.2516, beta = 12.4813] 

Gamma 0.1273 0.0325 0.1492 [alpha = 5.3128, beta = 0.0481] 

Lognormal 0.2731 0.0653 0.2104 [mu = -1.4621, sigma = 0.4930] 

Nakagami-m 0.0582 0.0147 0.1008 [m = 1.6674, omega = 0.0746] 

Rayleigh 0.1547 0.0447 0.1746 [sigma = 0.1932] 

Rice 0.0232 0.0058 0.0632 [s = 0.2300, sigma = 0.1042, K = 2.4372] 

Table 2-17: Goodness of Fits, 200m, 60 kHz Sinusoid 

 DKL DB DCRM Parameters 

Beta 0.0284 0.0066 0.0675 [alpha = 2.6273, beta = 4.8210] 

Gamma 0.0897 0.0226 0.1248 [alpha = 3.7575, beta = 0.0944] 

Lognormal 0.2330 0.0470 0.1791 [mu = -1.1756, sigma = 0.5977] 

Nakagami-m 0.0352 0.0090 0.0789 [m = 1.2156, omega = 0.1516] 

Rayleigh 0.0494 0.0137 0.0973 [sigma = 0.2753] 

Rice 0.0186 0.0047 0.0569 [s = 0.2883, sigma = 0.1850, K = 1.2142] 

Table 2-18: Goodness of Fits, 200m, 75 kHz Sinusoid 

 DKL DB DCRM Parameters 

Beta 0.0243 0.0054 0.0612 [alpha = 1.8600, beta = 3.5367] 

Gamma 0.0299 0.0066 0.0677 [alpha = 2.8129, beta = 0.1215] 

Lognormal 0.1345 0.0219 0.1227 [mu = -1.2620, sigma = 0.6885] 

Nakagami-m 0.0110 0.0027 0.0430 [m = 0.9149, omega = 0.1516] 

Rayleigh 0.0162 0.0037 0.0509 [sigma = 0.2753] 

Rice 0.0162 0.0037 0.0509 [s = 0.0004, sigma = 0.2753, K = 0.0000] 
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Table 2-19: Goodness of Fits, 200m, 85 kHz Sinusoid 

 DKL DB DCRM Parameters 

Beta 0.0185 0.0041 0.0536 [alpha = 2.1983, beta = 3.6467] 

Gamma 0.0385 0.0095 0.0809 [alpha = 3.4408, beta = 0.1089] 

Lognormal 0.1118 0.0229 0.1255 [mu = -1.1343, sigma = 0.6063] 

Nakagami-m 0.0178 0.0045 0.0560 [m = 1.0919, omega = 0.1746] 

Rayleigh 0.0198 0.0051 0.0596 [sigma = 0.2955] 

Rice 0.0167 0.0043 0.0543 [s = 0.2565, sigma = 0.2332, K = 0.6050] 

Table 2-20: Goodness of Fits, 200m, Strongest Impulse Response Tap 

 DKL DB DCRM Parameters 

Beta 0.0917 0.0222 0.1237 [alpha = 2.8064, beta = 3.4825] 

Gamma 0.1186 0.0307 0.1450 [alpha = 4.9964, beta = 0.0890] 

Lognormal 0.1940 0.0475 0.1800 [mu = -0.9139, sigma = 0.4981] 

Nakagami-m 0.0828 0.0220 0.1229 [m = 1.5415, omega = 0.2300] 

Rayleigh 0.1280 0.0364 0.1579 [sigma = 0.3391] 

Rice 0.0688 0.0182 0.1119 [s = 0.3904, sigma = 0.1969, K = 1.9654] 

The Rician distribution is the best match for most of the test cases at 200 meters.  In the 

narrowband trials, it is the consistently the best fit for the fading of the 35, 45, and 60 kHz tones.  

Moreover, the Rician distribution is also the best fit for wideband fading according to all three 

goodness of fit metrics.  At 75 kHz, the channel exhibits Nakagami-m fading, where m = 0.9149 

< 1.0 indicates the fading is more severe than Rayleigh.  At 85 kHz, the fading appears to be Ri-

cian, at least according to Kullback-Leibler divergence.  The other two metrics give the Beta dis-

tribution a narrow lead over the Rician distribution, although m = 1.0919 > 1.0 in the Nakagami-

m distribution indicates that the fading is at least less severe than Rayleigh.  (Recall that not all 

sources agree that Nakagami-m can model the Rician distribution.) 
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Figure 2-62: PDF of measurements and fits at 505m. 
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Table 2-21: Goodness of Fits, 505m, 35 kHz Sinusoid 

 DKL DB DCRM Parameters 

Beta 0.0287 0.0034 0.0486 [alpha = 2.4336, beta = 18.3310] 

Gamma 0.0260 0.0034 0.0484 [alpha = 2.7512, beta = 0.0425] 

Lognormal 0.2025 0.0193 0.1154 [mu = -2.3389, sigma = 0.6772] 

Nakagami-m 0.0337 0.0047 0.0569 [m = 0.8529, omega = 0.0185] 

Rayleigh 0.0517 0.0066 0.0677 [sigma = 0.0963] 

Rice 0.0517 0.0066 0.0677 [s = 0.0001, sigma = 0.0963, K = 0.0000] 

Table 2-22: Goodness of Fits, 505m, 45 kHz Sinusoid 

 DKL DB DCRM Parameters 

Beta 0.0727 0.0089 0.0782 [alpha = 2.2509, beta = 36.9124] 

Gamma 0.0689 0.0081 0.0747 [alpha = 2.4133, beta = 0.0237] 

Lognormal 0.4863 0.0138 0.0975 [mu = -3.0819, sigma = 0.7095] 

Nakagami-m 0.0939 0.0127 0.0936 [m = 0.7174, omega = 0.0049] 

Rayleigh 0.1947 0.0240 0.1284 [sigma = 0.0494] 

Rice 0.1947 0.0240 0.1284 [s = 0.0000, sigma = 0.0494, K = 0.0000] 

Table 2-23: Goodness of Fits, 505m, 60 kHz Sinusoid 

 DKL DB DCRM Parameters 

Beta 0.0092 0.0017 0.0347 [alpha = 2.1391, beta = 6.2493] 

Gamma 0.0123 0.0024 0.0407 [alpha = 2.8385, beta = 0.0894] 

Lognormal 0.1090 0.0178 0.1108 [mu = -1.5573, sigma = 0.6685] 

Nakagami-m 0.0066 0.0016 0.0332 [m = 0.8998, omega = 0.0850] 

Rayleigh 0.0128 0.0029 0.0450 [sigma = 0.2062] 

Rice 0.0128 0.0029 0.0450 [s = 0.0002, sigma = 0.2062, K = 0.0000] 

Table 2-24: Goodness of Fits, 505m, 75 kHz Sinusoid 

 DKL DB DCRM Parameters 

Beta 0.0266 0.0054 0.0614 [alpha = 2.9233, beta = 10.3616] 

Gamma 0.0523 0.0124 0.0924 [alpha = 3.6043, beta = 0.0612] 

Lognormal 0.2121 0.0402 0.1658 [mu = -1.6565, sigma = 0.6007] 

Nakagami-m 0.0172 0.0040 0.0524 [m = 1.1366, omega = 0.0601] 

Rayleigh 0.0232 0.0062 0.0656 [sigma = 0.1733] 

Rice 0.0169 0.0040 0.0526 [s = 0.1564, sigma = 0.1334, K = 0.6878] 
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Table 2-25: Goodness of Fits, 505m, 85 kHz Sinusoid 

 DKL DB DCRM Parameters 

Beta 0.0221 0.0045 0.0555 [alpha = 2.6744, beta = 10.5769] 

Gamma 0.0174 0.0034 0.0489 [alpha = 3.3415, beta = 0.0602] 

Lognormal 0.1103 0.0182 0.1121 [mu = -1.7606, sigma = 0.6046] 

Nakagami-m 0.0265 0.0058 0.0634 [m = 1.0163, omega = 0.0521] 

Rayleigh 0.0265 0.0059 0.0638 [sigma = 0.1614] 

Rice 0.0265 0.0059 0.0638 [s = 0.0001, sigma = 0.1614, K = 0.0000] 

Table 2-26: Goodness of Fits, 505m, Strongest Impulse Response Tap 

 DKL DB DCRM Parameters 

Beta 0.1272 0.0294 0.1421 [alpha = 1.7154, beta = 4.2336] 

Gamma 0.0670 0.0222 0.1235 [alpha = 2.5826, beta = 0.1087] 

Lognormal 0.1678 0.0376 0.1604 [mu = -1.4761, sigma = 0.7098] 

Nakagami-m 0.0737 0.0222 0.1235 [m = 0.8219, omega = 0.1072] 

Rayleigh 0.0951 0.0247 0.1304 [sigma = 0.2316] 

Rice 0.0951 0.0247 0.1304 [s = 0.0001, sigma = 0.2316, K = 0.0000] 

At 505 meters, the fading becomes noticeably more severe.  The Gamma distribution is 

the best fit for the fading of the individual 35, 45, and 85 kHz tones as well as for wideband fad-

ing.  At 60 kHz, the best fit is with the Nakagami-m distribution, where m = 0.8998 < 1.0 implies 

fading worse than Rayleigh.  At 75 kHz, it‟s a tossup between Rician and Nakagami-m, where m 

= 1.1366.  Interestingly, the fading at 75 kHz is less severe at 505 meters than it is at 200 meters. 

2.5.11 Analysis and Implications for Communication 

The maximum excess delay of the 200-meter channel is less than half that of the 505-

meter channel, as reported in Table 2-10.  Using the maximum excess delay as the lower bound 

for the duration of a symbol, the system can avoid ISI while transmitting up to about 5555 and 

2410 symbols per second at 200 and 505 meters, respectively.  The difference between the rms 

delay spread of the 200- and 505-meter channels is significantly less than the difference between 

the maximum excess delay values.  Therefore, the estimated symbol rates based on the rms delay 
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spreads are expected to be closer together.  At 200 meters, the predicted symbol rate is 677, while 

at 505 meters that number drops to 611 symbols per second. 

 The -3 dB coherence time of the Hudson at either distance is 50 ms.  Unless the commu-

nication system is operating at a mere 20 symbols per second, the duration of a symbol will be 

significantly shorter than the coherence time.  Thus, the channel is said to be one of slow fading.  

At 200 meters, the Hudson exhibits primarily Ricean fading.   At 505 meters, the fading becomes 

more severe than Rayleigh, as the Gamma distribution is the best fit for most of the tests. 

 Given the channel‟s fading characteristics, any amplitude-based modulation technique 

should be avoided as its performance is expected to degrade under these conditions.  If the re-

quired data rate results in frequency-selective fading across the channel, adaptive equalization, 

spread spectrum (either direct-sequence or frequency-hopping), OFDM (orthogonal frequency-

division multiplexing), or pilot signal techniques can be considered [Sklar 2001].  Diversity tech-

niques and the use of error-correcting codes can be exploited to reduce errors when the channel is 

in a deep fade.  The most straightforward approach is to employ frequency diversity, that is, to 

transmit the same information on multiple carriers, where the separation between carriers equals 

or exceeds the channel‟s coherence bandwidth [Proakis 2008].  If computational complexity is 

not an issue, the optimum demodulator for use in a fading multipath channel, called the RAKE 

receiver [Proakis 2008], can be employed.  The RAKE receiver decodes separate multipath com-

ponents and combines the output of all the correlators, thus providing higher SNR at the decision 

stage. 

 The best approach for determining which of the aforementioned techniques works best is 

to conduct a field test in the channel of interest.  Pregenerated signals can be transmitted through 

the channel, recorded, and returned to the lab for offline processing.  These signals should include 

at least the following: 
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1) M-ary FSK, as in the Benthos modems [Benthos 2010]. 

2) PSK and QPSK (and perhaps even 8-PSK) in several frequency bands and at several 

symbol rates that clearly result in frequency-selective fading for some trials and flat fad-

ing for others. 

3) Direct-sequence spread-spectrum on top of PSK (DSSS/BPSK). 

4) Frequency-hopping (FH) PSK and FH-FSK, as in the Micro-Modem [Freitag 2005]. 

5) OFDM with PSK and/or QPSK modulated carriers. 

6) Any of 1-5 preceded by a pilot signal (LFM chirp or other signal with good autocorrela-

tion properties) in the relevant frequency band that can be used to estimate the channel. 

7) Any of 1-5 with error-correcting codes such as Reed-Solomon or Turbo codes. 

The time-invariant office test environment is too simplistic for testing these different techniques.  

The most straightforward approach of using a pilot signal to estimate the channel and applying a 

zero-forcing equalizer to the received signal actually works quite well, allowing for data rates of 

up to 6 kbps with binary FSK.  The SNR in the tub is very high and the time-invariant characte-

ristic implies that the channel‟s characteristics will remain the same over the length of a symbol, 

packet, and even packet train.  Testing the complicated Hudson River estuary would be a more 

interesting project.  In fact, it was part of the research plan until funding ran out.  Therefore, since 

further experiments could not be conducted, related work on PHY layer techniques is presented 

here with a high-level discussion of expected results. 

 M-ary FSK works by transmitting M tones, where M is a multiple of two.  Using more 

tones allows the modem to pack more bits in a symbol.  With binary FSK, one tone represents a 

„0‟ and the other a „1‟.  With 4-FSK, each of the four tones can represent two bits at once – „00‟, 

„01‟, „10‟, and „11‟.  8-FSK can transmit three bits per symbol, and so on.  The advantage of this 

technique for higher values of M is that the symbol duration can exceed the multipath spread of 
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the channel and, hence, avoid ISI while offering the same data rate as a lower M value with faster 

signaling.  Early work by a collaboration of Datasonics (later acquired by Benthos), Delphi 

Communications Systems, and Naval Command, Control & Ocean Surveillance Center, RDT&E 

Division (NRaD) describes a variation of M-ary FSK implemented in the type-A telesonar mod-

em [Scussel 1997].  The previous ATM-850 modem uses 1-of-4 MFSK, where one tone in a 

group of four encodes two bits at a time.  Independent groups of four tones are transmitted simul-

taneously to transmit up to 16 bits during the symbol time of 12.8 ms.  The new modem has a 

symbol time of 25 ms, allowing for finer resolution in the frequency domain, with tones spaced 

by only 40 Hz.  As a result, the type-A modem can use 128 frequencies in the same bandwidth, 

transmitting up to 60 bits in one symbol frame.  In general, M-ary FSK is considered to be ma-

ture, reliable technology that works well in shallow water environments with multipath propaga-

tion. 

 The WHOI (Woods Hole Oceanographic Institution) introduced a version of the Micro-

Modem in 2005 that supports both FH-FSK and PSK data transmission.  While the default data 

rate on this modem is listed at 80 bps [Freitag 2005], FH-FSK can transmit at higher speeds.  In a 

single-user system, frequency hopping is exploited by allowing the channel to clear between suc-

cessive transmissions in the same frequency bin, thus eliminating ISI at the receiver [Parrish 

2007].  The duration of a symbol can be shorter than multipath spread, allowing for higher data 

rates, as long as the amount of time between each repeated use of a frequency bin exceeds the 

delay spread.  As an added advantage, frequency hopping can be exploited in a multi-user envi-

ronment in order to share the available bandwidth by allowing a number of users to transmit si-

multaneously on different hopping patterns [Parrish 2007]. 

 The PSK data transmission on the Micro-Modem offers much higher data rates of 300-

5000 bps [Freitag 2005].  Micro-Modems equipped with the floating-point coprocessor can re-
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ceive the PSK transmissions via a DFE.  By 2008 the Micro-Modem had been enhanced with 

QPSK signaling and Reed-Solomon codes [Freitag 2008].  The implementation of the DFE is 

similar to what Stojanovic described in her original work [Stojanovic 1993, 1994] except that the 

filter coefficients are updated with the adaptive step-size LMS
8
 algorithm instead of RLS

9
 and 

there is only one phase-locked loop
10

 (PLL) applied after the feedforward channels are combined 

instead of one for each hydrophone channel.  The modem was tested in Narragansett Bay, very 

close to the University of Rhode Island Graduate School of Oceanography facility in the March 

RACE 2008 experiment and again in a shallow area of the Atlantic Ocean south of Cape Cod in 

Massachusetts in the October SPACE 2008 experiment.  The water depth was very shallow in 

both cases – 10 meters for RACE 2008 and less than 15 meters for SPACE 2008.  The receiver 

arrays contained 12 hydrophone elements, 4 of which were selected to maximize the aperture.  

Under this experimental setup, which resulted in approximately 5000 bps burst throughput in the 

actual modem, it was observed that packets were decoded correctly when symbol SNR levels 

greater than 7 dB were obtained at the output of the equalizer.  Thus, it seems that high data rate 

phase-coherent communication is indeed possible in shallow water environments when coupled 

with the complexity of a DFE, error-correcting codes, and a receiver array. 

 Sozer et al. described a communication system based on direct-sequence spread spectrum 

signaling with a RAKE filter at the receiver [Sozer 1999].  In an experiment performed in the 

Baltic Sea in March 1999, the authors ran two trials in a 3 km channel, where the second was per-

formed with 12 dB less output power than the first.  They estimated the multipath spread of the 

channel to be about 2.5 ms, for which 6 RAKE receiver taps were required, and found no errors 

out of 200 bits in either trial. 

                                                             
8 The least mean squares (LMS) algorithm is used in adaptive filters to find the filter coefficients that correspond to 

producing the least mean squares of the error signal (difference between the desired and the actual signal). 
9 The recursive least squares (RLS) algorithm is used in adaptive filters to find the filter coefficients that correspond to 

recursively producing the least squares (minimum of the sum of the absolute squared) of the error signal. 
10 A phase-locked loop, implemented in either hardware or software, tracks changes to the incoming signal‟s phase. 
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Yang and Yang analyzed direct-sequence spread-spectrum signals collected from the 

TREX04 experiment to determine the BER as a function of the input SNR for a single receiver 

[Yang 2008].  The experiment was conducted in April 2004, off the coast of New Jersey, south-

west of the Hudson Canyon.  The DSSS signals were centered at 17 kHz and had a bandwidth of 

4 kHz.  The transmitted symbols were spread with an m-sequence of 511 chips using BPSK mod-

ulation.  The symbol duration was 127.8 ms, much longer than the channel‟s multipath delay of 

25 ms, which translated to a data rate of approximately 8 bps.  A total of 1160 packets of data 

were generated by adding ambient noise data collected at sea to the signal data (in post-

processing) to create signals with different input SNR, some as low as -15 dB.  The authors ana-

lyzed two methods, both of which used a time-updated channel impulse response estimate as a 

matched filter to mitigate the multipath-induced interferences.  The first method required an inde-

pendent estimate of the time-varying channel impulse response function; the second method used 

the channel impulse response estimated from the previous symbol as the matched filter.  The first 

method produced an average BER <10
-2

 for input-SNR as low as -12 dB, while the second me-

thod yielded similar performance for input-SNR as low as -8 dB.  Thus, DSSS can be useful in 

situations where noise is dominant or covert passing of short messages is required.  It is clear, 

though, that the data rate will be significantly compromised. 

Stojanovic and Freitag demonstrated promising results for a multi-user system with di-

rect-sequence CDMA
11

 [Stojanovic 2006].  Performance of two different receivers based on sym-

bol decision feedback (SDF) and chip hypothesis feedback (CHF) was demonstrated in a four-

user scenario, using experimental data obtained over a 2-km shallow-water channel.  At a chip 

rate of 19.2 kilochips per second (kc/s) with QPSK modulation, excellent results were achieved at 

                                                             
11 Code division multiple access, or CDMA, employs spread-spectrum technology and a coding scheme (where each 

transmitter is assigned a code that is orthogonal to the others so that the cross-correlation of any two codes is close to 

zero) to allow multiple users to be multiplexed over the same physical channel. 
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an aggregate data rate of up to 10 kbps.  However, the results were obtained with a stationary sys-

tem, and the received power for each of the users was equal, a condition which will almost never 

be the case in practice. 

Stojanovic proposed a low complexity adaptive algorithm for detecting OFDM signals in 

Doppler-distorted time-variant multipath channels [Stojanovic 2006a].  The receiver performs 

MMSE (minimum mean square error) combining of signals received across an array, using adap-

tive channel estimation.  Nonuniform Doppler compensation across subbands is performed using 

a single adaptively estimated parameter representing the Doppler rate.  A field test was conducted 

in September 2005 in Buzzards Bay, Massachusetts, to measure the performance of the algorithm.  

The channel was 12 meters deep and spanned 2.5 km.  QPSK modulation with a varying number 

of carriers was used, occupying 24 kHz of acoustic bandwidth.  No decision errors occurred with 

up to 1024 carriers, yielding an overall bit rate of 30 kbps. 

A group from Scripps Institution of Oceanography presented OFDM performance results 

from the KAM08 experiment, conducted off the western side of Kauai, Hawaii, in June 2008 

[Kang 2009].  The experiment was performed in 110-meter deep shallow water over a distance of 

4 km.  The signal was sent from one transmitter to receiver array of 16 elements.  The authors 

compared three channel estimation algorithms and found that sparse channel estimation using 

Orthogonal Matching Pursuit (OMP) [Pati 1993] performed the best for both single and multiple 

receiver configurations.  After combining the received signals from the hydrophone array, the 

authors obtained a 0.01% BER at a data rate of 10 kbps for QPSK without coding.  Unencoded 

QAM produced a BER of about 12% at a data rate of 20 kbps.  However, when iterative channel 

estimation was applied, error-free transmission was obtained within two iterations. 

In view of the related work presented here, one can conclude that there are many tech-

niques that allow for higher data rates than a channel‟s MIP will allow with binary signaling.  



88 
 

 
 

Also, it is clear that these techniques come at a cost, both in terms of algorithmic complexity and 

the need for an array of hydrophones at the receiver.  After reading these papers, though, one does 

not walk away with an understanding of which methods can provide reliable communication at 

the highest data rates in a given channel such as the Hudson.  There are two obvious drawbacks to 

the way research in this field is currently being directed.  Every experiment is conducted in a dif-

ferent body of water, and no single experiment compares techniques (such as FH-FSK, QPSK 

with DFE, and OFDM) that have vast differences.  Instead smaller variations in algorithms, such 

as channel estimation subroutines for OFDM, are investigated.  While it seems that OFDM is ra-

pidly becoming the method of choice for underwater acoustic communication, it is clear that the 

field is not yet ready to see how OFDM (or any other technique for that matter) performs in a 

network as opposed to just a point-to-point link.  For example, with OFDM, can the system be 

designed so that all the carriers in the network remain orthogonal in environments with Doppler 

distortion?  How will the system perform if some nodes are mobile?  The research community 

would really benefit from a channel characterization study that is immediately followed by a 

comparison of communication techniques in the same channel so that the relationship between 

the channel‟s properties and technique can be established.  Such a repository of information will 

truly assist those designing protocols for software defined radio platforms that allow the system 

adapt to a given environment.  However, for the underwater acoustic communication community, 

it seems that such an approach is still years away. 
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2.5.12 Limitations of Experimental Setup 

 
Figure 2-63: Successive impulse response estimates with uncorrected clock skew. 

There are several aspects of the experimental setup that contributed to error in the esti-

mates of the channel characterization functions.  The first and most significant is clock skew in 

the DAQ boards.  The NI PCI-6221 has a timebase stability of 50.0 parts per million (ppm).  The 

NI PCI-6123 is even worse, with a timebase stability of 100.0 ppm.  These numbers indicate that 

the clocks on the transmitter and receiver can be noticeably out of sync with one another.  In fact, 

with the two devices working in tandem to sound the channel, the combined error was approx-

imately an extra 3 samples every second.  With a sampling rate of 200 ksamples/sec, this amount 

corresponds to a clock skew of 0.0015%, which is well within the devices‟ specifications but sub-

stantial enough to cause problems.  Figure 2-63 shows the successive impulse response estimates 

in the Hudson at 200m without compensating for clock skew.  As time goes on, it takes progres-

sively longer for the correlation to occur.  Interestingly, Dessalermos observed a similar slope in 

his impulse response estimates but attributed it to boat drift [Dessalermos 2005].  As for the Hud-

son experiment, there was no drift, since both boats were anchored.  Moreover, the phenomenon 

was also observed on subsequent indoor experiments in the Davidson Laboratory towing tank, 
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where the transmitter and receiver were mounted to fixed apparatus in a perfectly still environ-

ment. 

Many high quality DAQ boards have an input for GPS time synchronization or some oth-

er form of external clocking.  Unfortunately none of the devices used in this experiment has ex-

ternal clocking capabilities.  If that option were available, the clocks of the transmitter and re-

ceiver could have been synchronized to the same source, eliminating the clock skew problem al-

together. 

Another possible solution to the clock skew problem is to resample the recorded data.  

Resampling involves interpolation and decimation to change the sampling rate by a rational factor 

(as well as filtering to remove aliasing).  Since the recorded data gains approximately an extra 3 

samples per second, it needs to be reduced to a sampling rate of 199,997 samples per second.  

Because there are no common factors in 199,997 and 200,000, resampling is accomplished by 

interpolating by a factor of 199,997 and then decimating by a factor of 200,000.  Not only are the 

computational requirements burdensome, but virtually every point in the new signal is interpo-

lated, thus introducing error. 

Even if the error caused by interpolation is negligible, there is no way to determine pre-

cisely what the sampling rate should be.  For example, perhaps the clock skew is actually 2.x or 

3.x samples per second.  Given all these unknowns and potential sources of error, the simplest 

approach was chosen – to delete 3 samples per second from the recording.  The first sample of 

three chirp signals spanning the 1-second interval was eliminated.  By dividing the interval into 

three equal pieces, the skew within each second is kept to a minimum.  Also, deleting the first 

sample of the chirp and not one in the middle minimizes the error, since the weak intensity of the 

reference and received signals at the low end of the spectrum has little effect on the overall corre-
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lation.  In addition, deleting the first sample avoids creating a phase discontinuity in the chirp sig-

nal. 

The second problem with the channel sounding experiment was with the emitter and the 

inadequate means of obtaining its frequency response.  As seen in Figure 2-42, the frequency re-

sponse is irregular, varying 35 dB over the 20-100 kHz range spanned by the chirp signal.  The 

worst part is that the 1-meter reference signal is not an accurate indication of the device‟s true 

properties.  Because the estuary is so shallow at the test site, the reference signal also included 

reflections from the surface and bottom that combined constructively and/or destructively, contri-

buting to the dips and valleys seen over the 80 kHz range.  Instead, one of two options should 

have been taken.  The simplest and best approach would have been to utilize a reputable manu-

facturer‟s calibrated emitter with known specifications.  Alternatively, the custom emitter could 

have been taken to a facility with an anechoic underwater chamber for analysis.  Either way, there 

would have been greater confidence in the results. 

2.6 Related Work 

Loubet and Jourdain estimated the impulse response of a shallow water channel in the 

Northern Sea.  They used a Maximum Length Binary Sequence (MLBS) with a BPSK carrier of 

550 Hz to sound the channel which was 500 meters deep and 4 kilometers wide (distance between 

the transmitter / receiver pair) [Loubet 1993].  The authors discovered three multipath arrivals 

that fluctuated in delay and amplitude due to surface reflections.  They also plotted the time evo-

lution of the phase values corresponding to the three multipath components and found them to be 

stable, even though the amplitudes fluctuated. 

In May 1997 Cook and Zaknich sounded the Fremantle Fishing Boat Harbour in Western 

Australia [Cook 1998].  The channel was approximately 150 meters long and 4 meters deep, and 

both the transmitter and receiver were positioned at a depth of 1.5 meters.  The chirp signal used 
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in this experiment had a duration of 10.306 ms and a bandwidth of 6 kHz centered at 17550 Hz 

and was repeated every 100 ms for 1 minute.  The authors illustrated four impulse response esti-

mates, taken at 0, 5, 25, and 50 seconds into the experiment.  The plots consistently showed two 

strong multipath components occurring within a 1-ms window followed by several other weak 

arrivals that vary in delay and amplitude.  One noteworthy aspect of this work is that the authors 

used inexpensive, non-specialized hardware including a laptop PC, power amplifier operating in 

switching mode, and piezo-electric transducer, to sound the channel. 

Chitre, Potter, and Heng conducted an experiment in February 2004 to measure the time-

variability of the impulse response of Singapore waters [Chitre 2004].  The hydrophone was at-

tached to the bottom of a 4-meter pole mounted to an anchored barge.  The emitter was also at-

tached to the bottom of a 4-meter pole mounted to the research vessel, which made transmissions 

at distances of 50, 100, 550, 780, and 1020 meters from the barge.  The sounding signal was a 30-

ms DSSS/BPSK waveform with a bandwidth of 40 kHz centered around 40 kHz.  It was repeated 

100 times at a rate of 10 Hz at each of the five locations.  The recorded signal was sampled at 250 

ksamples/sec.  The multipath arrivals were detected using a sign correlator. 

At 50 and 100 meters, the authors noted that a ray model fit the observed data well.  The 

surface-reflected arrival, which appeared less than 0.25 ms after the direct arrival, suffered very 

little attenuation, while the bottom-reflected arrival, which appeared 3.6 ms after the direct arrival 

at 50 meters and 1.8 ms at 100 meters, was 10 – 15 dB lower than the direct arrival.  Other weak-

er reflections caused by multiple surface-bottom interactions and reflections from nearby objects 

were occasionally observed.  At the remaining distances, the direct and surface-reflected arrivals 

could no longer be independently resolved.  The authors also examined the fading characteristics 

of the main arrival and discovered fading slightly less severe than Rayleigh when the direct arriv-
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al was fully resolvable and fading more severe than Rayleigh when the direct and surface-

reflected arrival overlapped, most likely due to destructive interference. 

In his master‟s thesis, Desselermos analyzed data gathered in the New England Shelf dur-

ing the April 2000 ForeFRONT-2 experiment [Desselermos 2005].  During this trial the receiver 

was mounted 30 meters above the shelf‟s floor.  The transmitter was deployed over the side of the 

vessel at a depth of 20 meters.  The channel was sounded at increasing distances in the range of 

700 – 6550 meters from the fixed receiver.  CTD measurements were taken prior to each sound-

ing. 

The transmitted signal consisted of many different waveforms including 50-ms LFM 

chirps in the range of 8 – 16 kHz, a comb signal consisting of 17 tones where each was separated 

by 500 Hz in the 8 – 16 kHz range, and DSSS/BPSK signals generated with Gold sequences that 

correspond to bit rates of 10 – 400 bps.  At each distance Desselermos estimated the time-variant 

impulse response using both the LFM chirp and DSSS signal and computed the scattering func-

tion and multipath intensity profile from the impulse response estimates obtained with just the 

DSSS signal.  He then used the BELLHOP model [BELLHOP 2010] to plot the eigenrays of the 

channel and derive the theoretical MIP based on the arrival time of each eigenray.  At 700 meters 

the delay spread exceeded 15 ms, while at greater distances it tended to be shorter due to the at-

tenuation of multiple reflections. There was good correlation between the theoretical MIPs and 

those calculated from measurements.  

Aik, Sen, and Nan presented experimental analysis of medium frequency (9 – 28 kHz) 

channel measurements in very shallow waters of 15 – 30 meters over the range of 80 – 4000 me-

ters in the coastal seas of Singapore [Aik 2006].  The channel was sounded with broadband BPSK 

signals modulated with m-sequences.  The symbol rate was 4625 bps, and the carrier frequency 

was 18.5 kHz.  Similar to Desselermos‟s findings, the authors noted that the delay spread general-
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ly decreases as the distance increases, with the excessive time delay (maximum excess delay set 

to 20 dB) ranging from 5.5 ms at 80 meters down to 0.5 ms at 4000 meters, with a slight increase 

to 7 ms occurring at 130 meters.  They also observed that coherence time increased over longer 

distances.  At 80 meters the coherence time was approximately 0.11 s, while it was 0.5 s at 4000 

meters, even with the ship drifting during that particular sounding.  The authors also determined 

that the channel exhibited a mix Rayleigh and Ricean fading, with Ricean being the better fit for 

most of the longer distances, and that the Gaussian distribution was a poor fit for the ambient 

noise present in Singapore waters. 

In August 2008 Kim et al. conducted a channel sounding experiment in Jinhae Bay, near 

the southern cost of Korea, where the water is about 20 meters deep [Kim 2009].  The receiver 

was fixed while the transmitter was moved to distances of 105, 193, 304, 425, 600, and 1000 me-

ters away from the receiver to sound the channel.  An ITC-1001 omnidirectional projector was 

utilized for transmission while a vertical array of 8 B&K Type 8103 hydrophones was employed 

as the receiver.  Two signals were used to sound the channel – a pure tone signal consisting of 5 

frequencies, each separated by 5 kHz, in the 20 – 40 kHz range and a broadband BPSK signal 

modulated by an m-sequence of 1023 bits at 5000 sps. 

Kim et al. have stated that frequency and coherence time tend to be inversely related, 

though the plots shown in Figure 5a only partially support that claim.  As for the relationship be-

tween distance and coherence time, at 105 and 600 meters they calculated a shorter coherence 

time than at the remaining distances.  The fading distribution was Rician at mid-range distances; 

however, the Rayleigh distribution was a better fit at both extremes. 

2.7 Summary and Future Work 

This chapter discussed the characterization of underwater acoustic channels for the pur-

pose of estimating the channel‟s impact on the performance of a digital communication system.  
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It provided an in-depth comparison of various sounding signals, description of the procedure used 

to gather data about the channel, and explanation of the signal processing that converts raw data 

into meaningful characterization functions.  The analyses of two WSSUS underwater channels, an 

artificial office test setup and the Hudson River estuary, were presented.  In both cases, the chan-

nel‟s scattering function and all derived functions were computed.  Values for Doppler shift and 

spread, delay spread, coherence bandwidth, and coherence time were provided.  In addition, vari-

ous distributions were fitted to amplitude fluctuations, and the channel was found to degrade from 

Ricean to Gamma fading (worse than Rayleigh) over increasing distances in the Hudson. 

Future work in this area is broken down into the following four steps, which are listed in 

order of increasing complexity: 

1) Determine the true frequency response of the emitter.  As mentioned in Section 2.5.12, the 

response of the emitter obtained at 1 meter is not accurate, since constructive and destructive 

interference from multiple reflections cannot be eliminated from the test setup.  The trans-

ducer should be taken to a facility with an anechoic chamber for analysis or, if this is not 

possible, a device with known specifications should be deployed instead. 

2) In addition to sounding the channel with LFM chirps, both a DSSS/BPSK signal based on a 

PN sequence and white noise should be used.  Before attempting to use them in the Hudson, 

these other signals should first be tested in the time-invariant tub to see how the impulse re-

sponse estimates derived from them compare to those obtained when using LFM chirps. 

3) When going out into the Hudson, characterize the channel at several other distances – some 

less than 200 meters and some greater than 505 meters.  With only two points in the data set, 

making generalizations is virtually impossible.  In addition to sounding signals, waveforms 

containing modulated data should be transmitted and recorded for offline analysis.  It would 
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be interesting to see how the data rates predicted by the characterization functions differ from 

those actually obtained in the channel. 

4) Deploy buoys complete with computers, transducers, and standard RF-based wireless com-

munication to perform channel characterization remotely at any time.  Having the ability to 

gather data without the hassle of manually deploying two boats and a team of scientists would 

be a huge asset to the underwater communications research community.  Data can be ga-

thered at any time of the day during any day of the week in any season of the year by simply 

issuing a command to power up the system.  Once data is recorded, it can be downloaded via 

802.11 to a computer in the lab for offline processing.  Such a system truly affords the ability 

to make statistical observations and generalizations.  Of course, many details about the design 

of the system for long-term deployment, including buoy location, method of battery reple-

nishment, and thermal considerations, must be carefully engineered. 
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Chapter 3  

Simulation of Underwater Channel and 

Physical Layer 

3.1 Purpose 

The work described in this chapter takes impulse response measurements such as those 

from Chapter 2 and applies them to an underwater channel model for use in the OMNeT++ dis-

crete event simulator [OMNeT 2010].  The basic idea is to simulate any underwater channel 

based on real measurements to recreate the distortion the actual channel would impose on a sig-

nal.  Through a mathematical process called convolution, the impulse response estimates obtained 

from the channel sounding experiment serve as the basis for this model.  In this simulation the 

application layer of a node generates real data packets, which get converted into modulated 

acoustic signals.  These modulated waveforms are “mixed” with the channel‟s properties and sent 

to a receiver implemented fully in software, where the actual BER is computed.  This form of 

simulation results in more accurate BERs than what is currently being generated by underwater 

network simulators that derive a BER based solely on SINR.  The simulation currently offers 

PSK (phase-shift keying) and FSK (frequency-shift keying) transmission and means of adjusting 

the sampling rate, carrier frequency, and symbol rate among other configuration parameters. 

3.2 Related Work 

BELLHOP is a program, originally written in Fortran but now also available in MAT-

LAB, that performs two-dimensional acoustic ray tracing for a given sound speed profile or 

sound speed field in ocean waveguides with flat or contoured absorbing boundaries [Porter 1994; 

Rodríguez 2008].  It can output ray coordinates, travel time, amplitude, eigenrays, acoustic pres-

sure, and transmission loss.  Though this program is not specifically oriented toward underwater 
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communication, it provides useful information about the channel and has been integrated into 

other simulations described below.  Figures 3-1 and 3-2 as well as Figure 1-2 from Chapter 1 de-

pict some of BELLHOP‟s outputs. 

 
Figure 3-1: Eigenrays characterizing the acoustic propagation over 700 meters in the New England 

Shelf traced using BELLHOP [Dessalermos 2005]. 

 

 
Figure 3-2: BELLHOP theoretical estimate of multipath intensity profile of New England Shelf at 

700 meters [Dessalermos 2005]. 
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Diamant and Chorev describe a tool for measuring and emulating the underwater acoustic 

channel which relies on the impulse response matrix (IRM) evaluation [Diamant 2005].  Using 

data obtained during a channel sounding experiment, the authors construct a matrix of sequential 

impulse responses to represent the time-varying impulse response of the channel, with the Medi-

terranean Sea used as a case study.  Two-dimensional convolution is performed with a modulated 

waveform and the emulated IRM to produce a new signal that exhibits the emulated channel re-

sponse (ECR).  Transmission loss over the channel is evaluated by subtracting the measured the 

level at the receiver from the measured the source level of the transmitter.  Noise, either generated 

with an empirical formula or recorded in the actual channel, can be added to the signal to emulate 

various SNRs.  The authors found the ECR to a given signal to be highly correlated (typically 

greater than 80%) with the response of the actual channel. 

Harris and Zorzi implemented a model [Harris 2007] for ns-2 [NS2 2010] that mainly re-

lies on empirical formulas to describe the underwater acoustic channel.  Their model is divided 

into the following four categories: propagation, channel, physical layer, and modulation.  The 

propagation model calculates the SNR of a signal at the receiver after attenuation, ambient noise, 

and possible interference from other nodes are taken into account.  Thorp‟s approximation for the 

absorption of a wave at a given frequency and formulas for the PSD of various noise-producing 

agents [Coates 1989] form the basis for calculating the range of transmission and SNR at the re-

ceiver.  The channel model maintains lists of nodes to calculate neighbor sets and determine if 

packet collisions occur during transmissions.  In addition, the channel model is responsible for 

calculating propagation delays.  The physical layer model calculates the available bandwidth for 

the channel given the distance between the transmitter and receiver and relies upon the modula-

tion model to calculate the effective bit rate and bit error rate, given the SNR and bandwidth used. 



100 
 

 
 

The Underwater Sensor Network Lab (UWSN) at the University of Connecticut has de-

veloped a simulator called Aqua-Sim [Aqua-Sim 2010] as an extension to ns-2.  While still a 

work in progress, the software currently supports 3D and mobile networks, simulates underwater 

acoustic channels, and implements a complete protocol stack from the physical layer up to the 

application layer.  UnderwaterChannel and UnderwaterPhy are the C++ classes most relevant to 

the other works in this section.  In this simulator, these objects focus on power consumption and 

propagation range and delay for recreating packet collisions.  There is no support for estimating 

bit error rates based on SNR or channel impulse response estimates.  Based on the publications 

listed on the lab‟s web site as well as a code walk-through, the simulator‟s strong point is for eva-

luating protocols, especially those at the MAC and routing layers. 

Another work in progress is the NS2 UAN Simulator being developed by the Fundamen-

tals of Networking Laboratory (FuNLab) at the University of Washington‟s Department of Elec-

trical Engineering [FuNLab 2010].  While not intended for distribution, the ns-2 version of the 

software is available for downloading.  It features a FH-FSK PHY which attempts to closely 

model FH-FSK as implemented in the WHOI Micro-Modem, an improved propagation layer 

which uses BELLHOP output to compute signal attenuation and channel delay spread, and sever-

al new MAC layers including pure ALOHA, ALOHA with random backoff, and a reservation 

MAC with a dedicated control channel.  The team, led by Leonard Tracy, is currently developing 

new modules for ns-3, none of which is presently available. 

The World Ocean Simulation System (WOSS) also employs the BELLHOP model for 

propagation modeling [Guerra 2009].  This project interfaces with three separate databases to ob-

tain the information necessary to run the BELLHOP model, which includes the sound velocity 

profile, the bathymetric profile, and the type of bottom sediments.  The World Ocean Database 

[WOD 2010] which contains the constituent data for generating sound velocity profile for under-
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water channels across the world.  The bathymetric data have been taken from the General Bathy-

metric Chart of the Oceans [GEBCO 2010], a public database offering samples of the depth of the 

sea bottom with an angular spacing of 30 seconds of arc.  Finally, the type of bottom sediments is 

taken from the National Geophysical Data Center‟s Deck41 database [NGDC 2010].  Noise pow-

er is computed through empirical formulas and is modeled as a white process within the frequen-

cy band of the modulated carrier.  Upon obtaining a specification of the physical layer, the MI-

RACLE package [MIRACLE 2010] for ns-2 handles the remaining part of the simulation, namely 

the computation of Signal-to-Interference-plus-Noise Ratio (SINR) for all transmissions and the 

error rates corresponding to these SINR values. 

Shin and Park implemented a simulation for the underwater environment in OMNeT++ 

[Shin 2008].  The propagation model is simply based on empirical formula, since the authors 

were more concerned with simulating various ack techniques.  Finally, Nasri et al. proposed si-

mulating the underwater channel using the hardware description language VHDL-AMS [Nasri 

2009].  The one aspect of this work that differentiates it from the others is the simulation of a 

multipath Rayleigh fading channel via Jakes‟s model [Jakes 1975]. 

The simulation described in this section differs from the previous work in that it is fully 

based on channel measurements, providing the most accurate representation of the channel possi-

ble.  The impulse response measurements give the delay spread and frequency response of the 

channel.  The CTD measurements are used to calculate the propagation delay.  Ambient noise is 

added to the signal to realistically estimate the SNR with which the signal is received.  Unlike 

prior efforts, the simulation employs real software defined radio concepts.  The transmitter and 

receiver manipulate sampled signals just as they would in a digital communication system, with 

hard limiters, filters, correlators, and comparators, making it easy to test how a given PHY layer 

implementation works in the channel.  Furthermore, the simulation is written in a modular fashion 
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so that it can easily be extended with new processing blocks and any component can be replaced 

with an alternate implementation. 

3.3 Simulation 

Measurements form the basis of the simulation.  CTD measurements yield the sound ve-

locity profile of the channel, which is then used to calculate the propagation delay.  Noise mea-

surements are combined with a formula for the estimated transmission loss to approximate the 

SNR with which a packet is received.   Data packets are converted into modulated waveforms and 

convolved with the impulse response of the channel, and then noise is added to produce a new 

signal that has the SNR previously computed by the simulation.  At this point the new signal con-

tains a reasonably close approximation to the distortion the channel would have imposed upon a 

real transmitted waveform.  Finally, the distorted signal is demodulated and its BER is computed. 

Figure 3-3 depicts the architecture of the OMNeT++ simulation.  The application and 

link layers are implemented as objects within OMNeT++.  While these layers are outside the 

scope of this project, they exist to form a more cohesive network stack whose functionality can be 

extended in future work.  At the present time the application layer simply creates and receives 

messages.  The transport layer, which typically handles reliable end-to-end delivery with sophis-

ticated functions such as retransmission and flow control, has not been implemented.  The link 

layer manages checksums.  Before frames are sent to the PHY layer, the link layer computes the 

checksum and stores it inside the frame.  Upon receiving an incoming frame from the PHY later, 

the link layer recomputes the checksum and compares it to the stored checksum.  If the two val-

ues match, the message is passed up to the application layer.   Otherwise, it assumes that the data 

is corrupt, and the frame is discarded.  The PHY layer and underwater acoustic channel model is 

actually implemented in MATLAB and exported as a shared library with which the OMNeT++ 
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simulation links.  More details about the implementation of the PHY layer and channel appear in 

the subsequent sections. 

 

Figure 3-3: Architecture of OMNeT++ simulation for PHY layer and underwater acoustic channel.  

Areas in gray represent data from measurements.  Areas in yellow are implemented in MATLAB.  A 

simple implementation of the application and link layers is included for future extensions but is not 

the focus of this work. 
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3.3.1 Propagation and Transmission Delay 

Propagation delay is the amount of time it takes for the beginning of a (possibly long) 

signal to travel from the transmitter to the receiver over a channel.  In order to calculate it, the 

distance of the link and the propagation speed must be known.  In this simulation the link distance 

is an adjustable user parameter with acceptable values of 200 or 505 meters, since those are the 

only two distances for which measurements exist.  Note that simulator itself can model any dis-

tance, as long as the corresponding data is present.  The speed of sound in water is often esti-

mated to be 1500 m/s; however, this simulation aims to be more accurate.  The sound velocity 

profile is computed using Equation (2.23).  The velocity values obtained over the water column 

are averaged.  This average rate is then used to calculate the approximate propagation delay with 

the standard time = distance / rate formula.  Transmission delay is the amount of time it takes to 

send all of the packet‟s bits into the channel.  It is given by the formula DT = N / R, where DT is 

the transmission delay, N is the number of symbols, and R is the rate of transmission in symbols 

per second. 

3.3.2 Transmission Loss 

Transmission loss, which describes the weakening intensity of a signal over a distance, 

was not measured during the August 2008 experiment in the Hudson River estuary.  It was, how-

ever, measured in a previous experiment conducted in the same region of the Hudson by a group 

of researchers at Stevens [Roh 2008].  They estimated the attenuation coefficient α at 0.058 dB/m 

between 10 – 80 kHz, yielding the following formula for transmission loss: 

                                  (3.1) 

where r is the distance over which the loss is being calculated.  The simulation uses this equation 

to estimate transmission loss. 
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3.3.3 Noise 

 

Figure 3-4: Noise levels in the Hudson River estuary produced by different passing ships. 

Noise measurements from previous experiments were incorporated into the simulation 

[Borowski 2008].  Two categories of noise are modeled.  The first is just ambient noise in the 

estuary, while the other is the noise level when various ships are present.  Figure 3-4 shows the 

noise levels recorded in the Hudson River estuary under different conditions ranging from am-
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bient noise to a small speed boat to a large tug and barge.  The simulation chooses a noise level 

randomly for each packet that is sent through the channel. 

The simulation determines the average noise level in the frequency band of the mod-

ulated signal.  For instance, binary FSK signaling at 1000 symbols per second typically requires 2 

kHz of bandwidth for good performance with a noncoherent receiver.  Therefore, if the carrier 

frequency were 50 kHz, the simulation would find the average noise level in dB from 49 – 51 

kHz.  Since the values are given in dB, they must converted to linear scale, averaged, and then 

converted back to dB scale, as in 

               
 
            

 

 

   (3.2) 

where L is the level of a particular frequency component in dB. 

3.3.4 Modulation 

The simulation can generate binary FSK or PSK waveforms.  With binary FSK, two 

tones are used.  One tone represents the data bit „0‟ and the other represents „1‟.  Since the FSK 

receiver implements noncoherent demodulation, the tones must be separated by the number of Hz 

equal to the symbol rate.  So, at 2000 bits per second, the tones must be separated by 2000 Hz.  

More formally, modulation index k is set to 1.  The modulation index is defined by the formula 

          (3.3) 

where fd is the frequency deviation in Hz (½ the separation between the two tones) and R is the 

data rate in symbols per second.  As with other inexpensive noncoherent FSK systems, a modula-

tion index of 1 is required to obtain reasonable receiver performance [Marrow 2002].  A specific 

type of FSK, called continuous-phase FSK or CPFSK, has been implemented as it is more band-

width-efficient than FSK that breaks phase at the start of each symbol.  Figure 3-5 shows the 

MATLAB code to generate a CPFSK signal. 
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%% Performs CPFSK modulation. 

%  Pre: data is a vector of length numberOfBits of zeros and ones. 

samplingRate = 200000; 

symbolsPerSecond = 1000; 

samplesPerBit = floor(samplingRate / symbolsPerSecond); 

carrierFreq = 80000; 

fc = [(carrierFreq - symbolsPerSecond / 2) (carrierFreq + symbolsPerSecond / 

2)]; 

txFSK = zeros(1, samplesPerBit * numberOfBits); 

t = 0.0; 

for i = 1:numberOfBits 

    for j = 1:samplesPerBit 

        t = t + 2 * pi * fc(data(i)+1) / samplingRate; 

        if (t > pi) 

            t = t - 2 * pi; 

        end 

        txFSK(j + samplesPerBit*(i-1)) = cos(t); 

    end 

end 

 

Figure 3-5: MATLAB code to generate a CPFSK waveform. 

 While FSK changes the frequency of the carrier signal, PSK changes the signal‟s phase.  

With BPSK, the signal representing a „0‟ is 180° out of phase with the signal representing a „1‟.  

The MATLAB code to generate a BPSK signal, shown in Figure 3-6, is quite similar in structure 

to the code for FSK.  Note that t is reset to 0 before generating the next symbol.  This step is ne-

cessary so that any carrier frequency can be used and successfully demodulated by a simple cor-

relation receiver.  If this step were not present, the symbol rate would need to evenly divide the 

carrier frequency, which would need to evenly divide the sampling rate so that there would be an 

even number of periods of the sinusoid in each symbol and that the phase transitions would occur  

only 180° apart at y = 0. 

 

%% Performs PSK modulation. 

%  Pre: data is a vector of length numberOfBits of zeros and ones. 

samplingRate = 200000; 

symbolsPerSecond = 1000; 

samplesPerBit = floor(samplingRate / symbolsPerSecond); 

carrierFreq = 80000; 

txPSK = zeros(1, samplesPerBit * numberOfBits); 

t = 0.0; 

for i = 1:numberOfBits 

    offset = samplesPerBit * (i-1); 

    for j = 1:samplesPerBit 

        t = t + 2 * pi * carrierFreq / samplingRate; 

        if (t > pi) 
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            t = t - 2 * pi; 

        end 

        if (data(i) == 0) 

            txPSK(j + offset) = -cos(t); 

        else 

            txPSK(j + offset) = cos(t); 

        end 

    end 

    t = 0.0; 

end 

 

Figure 3-6: MATLAB code to generate a PSK waveform. 

3.3.5 Channel Emulation 

The impulse response estimates of the Hudson River estuary from Section 2.5.4 form the 

kernel of the simulation.  The database seen in Figure 3-3 is implemented as two directories of 

wav files, one pertaining to the measurements at 200 meters and the other at 505 meters.  The 

code in Figure 3-7 shows how the impulse estimates have been extracted.  There are two note-

worthy aspects of this code segment.  The first is that each impulse response must be “cropped” 

to contain only significant multipath components.  Any value that is within 6 dB (0.25) of the 

strongest arrival‟s intensity must be included in the estimate, as it contains relevant information 

about the delay spread and frequency response of the channel at that moment.   In a personal con-

versation with Jim Preisig at WUWNet‟09 [Preisig 2009], he stated that values within 4 dB of the 

strongest intensity are significant, though he agreed that choosing a -6 dB cutoff would also be 

reasonable.  The second interesting point is that the impulse responses can be normalized only 

after all of them have been extracted.  This way, the amplitudes of the estimates obtained during a 

deep fade are not artificially increased to equal those of estimates obtained during periods with 

high SNR.  While this feature is not exploited in the current simulation, it is beneficial to create 

the database with measurements that are as accurate as possible for future extensions.  

 

%% Extracts impulse estimates to individual wav files. 

seconds = 0.005; 

len = seconds * samplingRate; 

impulseResponse = zeros(numOfImpulseResponses, len); 
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for i = 1:numOfImpulseResponses 

    snip = recordedSignal((i-1)*referenceSamples+1:i*referenceSamples); 

    temp = fftshift(real(xcorr(snip, conj(referenceSignal)))); 

    [maxValue maxIndex] = max(temp); 

    earlyPeakIndex = ... 

        find(temp(max(maxIndex - 0.0005*samplingRate, 1):end) > 0.25*maxValue); 

    [mainPeak mainPeakIndex] = ... 

         max(temp(max(maxIndex - 0.0005*samplingRate, 1):end)); 

    offset = mainPeakIndex - earlyPeakIndex; 

    temp = temp(maxIndex - offset:maxIndex - offset + len); 

    impulseResponse(i,:) = temp(1:len); 

end 

[maxVal maxIndex] = max(max(abs(impulseResponse))); 

impulseResponse = 0.98 * impulseResponse / maxVal; 

for i = 1:numOfImpulseResponses 

    filename = sprintf('IR_200m/IR_%d', i);  

    wavwrite(impulseResponse(i,:), samplingRate, filename); 

end 

 

Figure 3-7: MATLAB code to extract impulse estimates to individual wav files. 

 When a frame is passed through the simulated channel, it is convolved with one random-

ly chosen impulse response estimate.  As the lengths of the input vectors grow, the execution time 

of convolution performed in the time domain grows quadratically.  Therefore, to improve the per-

formance of the simulation for long data frames and/or delay spreads, FFT convolution is imple-

mented.  Convolution in the time domain corresponds to multiplication in the frequency domain.  

Thus, in FFT convolution the input signal is transformed into the frequency domain using FFT, 

multiplied by the frequency response of the filter, and then transformed back into the time domain 

using the inverse FFT [Smith 2003].  The complexity of FFT convolution is O(n log n), which is 

a huge improvement over O(n
2
). 

 After the convolution routine is finished executing, noise is added to the signal so that the 

resulting SNR = SL – TL – NL, where SL is the user-specified source level, TL is the transmis-

sion loss described in Section 3.3.2, and NL is a randomly chosen noise level described in Section 

3.3.3.  The noise added to the signal is AWGN.  This is a reasonable simplification, since the si-

mulation is concerned only with noise in the frequency band of the data transmission, which oc-

cupies a small amount of space on the acoustic spectrum. 
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3.3.6 Demodulation 

The simulator can demodulate PSK and FSK signals.  A correlation receiver is used to 

demodulate PSK waveforms.  It works by dividing the incoming stream into small sections with 

the duration of an individual symbol.  Each section is multiplied by the reference signals of the 

same length that represent the symbols „0‟ and „1‟.  The results are then summed over the symbol 

duration, and finally the comparator chooses the symbol whose sum was the greatest.  Figure 3-8 

shows the block diagram for a correlation receiver with M reference signals.  Note that in the case 

of BPSK waveforms, only 2 reference signals are required.  Figure 3-9 shows how to translate the 

block diagram into MATLAB code. 

 

Figure 3-8: Correlation receiver with M reference signals {si(t)} [Sklar 2001]. 

 

%% Demodulates PSK signal using a correlation receiver. 

t = 0:samplesPerBit-1; 

psk0 = -cos(2 * pi * carrierFreq/samplingRate * t); 

psk1 =  cos(2 * pi * carrierFreq/samplingRate * t); 

rxPSK = zeros(1, numberOfBits); 

for i = 1:numberOfBits 

    rcv = packet((i-1)*samplesPerBit + 1:i*samplesPerBit); 

    zero = rcv .* psk0; 

    one = rcv .* psk1; 

    z0 = sum(zero); 

    z1 = sum(one); 

    rxPSK(i) = (z1 > z0); 

end 

 

Figure 3-9: MATLAB code implementing a correlation receiver for PSK signals. 
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While the PSK waveform that was transmitted originally contained ‟0‟ and „1‟ reference 

signals of –cos(2πft) and cos(2πft), where f is the carrier frequency and t is time, the phase of re-

ceived waveform may be distorted so that transitions no longer occur at 0° and 180°.  For in-

stance, perhaps they now occur at 25° and 205°.  In order to improve the performance of the cor-

relation receiver, it would be necessary to estimate these offsets.  A simple solution, the one im-

plemented in the simulator, is to send training symbols of alternating ones and zeros at the begin-

ning of the signal.  The receiver can first try various offsets to find the one that maximizes the 

correlation of the known symbols.  Since the model currently convolves a single impulse re-

sponse with the data signal, this type of synchronization is adequate.  However, when communi-

cating through and modeling real time-variant channels, more sophisticated methods are neces-

sary.  A receiver which jointly performs carrier synchronization and fractionally spaced decision 

feedback equalization of the received signal and whose parameters are adaptively adjusted using 

a combination of the RLS algorithm and second-order digital PLL was shown to perform well in 

short-range shallow water of 2 nautical miles at 10 kbps [Stojanovic 1994].  Since the simulator is 

written in modular fashion, one can write the code for this receiver in MATLAB and incorporate 

it into model with minimal effort. 

Noncoherent detection of FSK waveforms is implemented via both the quadrature receiv-

er and bandpass filters/envelope detectors.  Each receiver is also able to employ a hard limiter 

[Jones 1963] as the first stage of demodulation process.  This procedure places a cap on high-

amplitude samples and raises low-amplitude samples to the value of the cap.  Utilization of a hard 

limiter helps equalize the signal so that each tone in the FSK signal has the same amplitude be-

fore it is passed to subsequent stages of the receiver.  This is especially useful when working with 

transducers that do not have a flat frequency response.  Two correlators are used for each tone, 

one for the in-phase (I) and quadrature (Q) channels.  Since measurements of the signal‟s phase 



112 
 

 
 

cannot be exploited, the receiver is merely an energy detector.  By summing the squares of the 

correlation on each channel, the same values will be fed to the decision stage if either channel had 

full correlation while the other had none or if the incoming signal partially correlated with both 

references.  Figure 3-10 shows the block diagram for a quadrature receiver; Figure 3-11 shows 

how to translate the block diagram into MATLAB code.  The implementation of hardlimit is 

found in Section B.2 of the appendix. 

 
Figure 3-10: Quadrature receiver for noncoherent detection of FSK signals [Sklar 2001]. 

 

 

%% Demodulates FSK signal using a quadrature receiver. 

fc = [(carrierFreq - symbolsPerSecond/2) (carrierFreq + symbolsPerSecond/2)]; 

t = 0:samplesPerBit-1; 

cos0 = cos(2 * pi * fc(1)/samplingRate * t); 

sin0 = sin(2 * pi * fc(1)/samplingRate * t); 

cos1 = cos(2 * pi * fc(2)/samplingRate * t); 

sin1 = sin(2 * pi * fc(2)/samplingRate * t); 

rxFSK_q = zeros(1, numberOfBits); 

for i = 1:numberOfBits 

    if (useLimiter) 

        rcv = hardlimit(packet((i-1)*samplesPerBit + 1:i*samplesPerBit)); 
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    else 

        rcv = packet((i-1)*samplesPerBit + 1:i*samplesPerBit); 

    end 

    Izero = rcv .* cos0; 

    Qzero = rcv .* sin0; 

    Ione = rcv .* cos1; 

    Qone = rcv .* sin1; 

    z1 = (sum(Izero))^2; 

    z2 = (sum(Qzero))^2; 

    z3 = (sum(Ione))^2; 

    z4 = (sum(Qone))^2; 

    energy0 = z1 + z2; 

    energy1 = z3 + z4; 

    rxFSK_q(i) = (energy1 > energy0); 

end 

 

Figure 3-11: MATLAB code implementing a quadrature receiver for FSK signals. 

 The simulation also implements noncoherent FSK detection with bandpass filters fol-

lowed by envelope detectors, as shown in Figure 3-12.  When using binary FSK, the incoming 

signal is passed through two separate filters (M = 2 in Figure 3-12) to eliminate signals outside 

the band used by each tone.  Second-order IIR filters based on the design in [Smith 2003] are 

used.  For a second-order filter, the best performance is obtained when the product BT is close to 

1.0, where B is the -3dB bandwidth in Hz and T is the duration of a symbol [WJC 1980].  There-

fore, the filters have been designed to operate with bandwidth 1/T centered on the tones 

representing 0s and 1s. 

 

Figure 3-12: Noncoherent detection of FSK signals using bandpass filters and envelope detectors 

[Sklar 2001]. 
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Upon completion of the filtering stage, the resulting signals are passed to the envelope 

detectors, each of which first applies the Hilbert transform to obtain the imaginary part xi of a 

signal containing only real values xr.  The envelope is then obtained by taking the magnitude of 

the signal, as shown by Equation (2.22).  Finally, for each symbol the envelopes are summed over 

several samples, and the symbol corresponding to the greatest sum is outputted by the decision 

stage. Figure 3-13 shows how to translate the block diagram in Figure 3-12 to MATLAB code.  

The implementation of filterSignal is found in Section B.3 of the appendix. 

 

%% Demodulates FSK signal using a bandpass filters and envelope detectors. 

fc = [(carrierFreq - symbolsPerSecond/2) (carrierFreq + symbolsPerSecond/2)]; 

if (useLimiter) 

    zeroSignal = abs(hilbert(filterSignal(hardlimit(packet), samplingRate, ... 

                             fc(1), symbolsPerSecond))); 

    oneSignal = abs(hilbert(filterSignal(hardlimit(packet), samplingRate, ...  

                             fc(2), symbolsPerSecond))); 

else 

    zeroSignal = abs(hilbert(filterSignal(packet, samplingRate, fc(1), ... 

                             symbolsPerSecond))); 

    oneSignal = abs(hilbert(filterSignal(packet, samplingRate, fc(2), ... 

                            symbolsPerSecond))); 

end 

diff = oneSignal - zeroSignal; 

 
rxFSK_e = zeros(1, numberOfBits); 

for i = 1:numberOfBits 

    % Sample in second half of symbol to avoid ring in IIR filter. 

    rcv = sum(diff((i-1)*samplesPerBit + ... 

                   floor(samplesPerBit/2):i*samplesPerBit)); 

    rxFSK_e(i) = (rcv > 0); 

end 

 

Figure 3-13: MATLAB code implementing a receiver for FSK signals with bandpass filters and 

envelope detectors. 

3.4 Emulator Validation 

In order to validate the design of the measurement-based channel emulator, several expe-

riments were conducted in the office test environment.  The premise is that a frame that is trans-

mitted through the channel will have the same number of bit errors as a clean frame waveform 

that is convolved with the impulse response of the channel.  The office test environment was used 

because it is easily accessible and offers a simplistic time-invariant channel.  The simulation is, 
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indeed, expected to be less accurate for the Hudson River estuary because of its complex time-

variant nature and severe fading.  However, another field experiment in the Hudson was not poss-

ible due to lack of funding. 

3.4.1 Procedure 

Thirty composite test signals were generated and transmitted through the tub.  Binary 

FSK and PSK signals were transmitted at five different bit rates to cover cases with and without 

channel-induced ISI.  Communication was tested in three frequency bands – 7.5 kHz, 12.5 kHz, 

and 17.5 kHz – that evenly divided and collectively spanned the usable channel bandwidth.  The 

sampling rate for all signals was 48 kHz. 

Each composite signal starts with a 5-second LFM chirp over the entire channel band-

width (0 – 24 kHz) that is used to estimate the system‟s impulse response at the beginning of that 

particular test.  The time-invariant office test environment provides the opportunity to use a long-

er chirp signal than was used in the Hudson experiment, resulting in the best autocorrelation, and 

hence, most accurate impulse response estimate.  Modulated waveforms appear after the long 

chirp signal.  Fifty duplicate packets, each beginning with a short chirp signal for synchronization 

purposes and separated from the next by 1 second of silence, were transmitted in all tests except 

for those running at only 250 bps, where only twenty duplicate packets were transmitted.  Table 

3-1 summarizes the bit rates tested at each frequency.  Only bit rates that even divided the carrier 

frequency were used in this experiment.  Figures 3-14 and 3-15 show the time and frequency do-

main views of the recorded chirp signal and FSK-modulated packets during one of the fifteen 

tests. 
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Table 3-1: Bit rates tested at each carrier frequency in the office tub. 

Frequency (Hz) Bit Rate (bps) 

7,500 250 500 1250 2500 3750 

12,500 250 500 1250 2500 3125 

17,500 250 500 1250 2500 3500 

 

Figure 3-14: Time domain view of recorded 5-second LFM chirp signal followed by FSK-modulated 

packets at 500 bps with a 12.5 kHz carrier. 

 

Figure 3-15: Frequency domain view of Figure 3-14 (recorded 5-second LFM chirp signal followed 

by FSK-modulated packets at 500 bps with a 12.5 kHz carrier). 



117 
 

 
 

 For each of the fifteen trials in this experiment, the recorded signal of modulated wave-

forms was processed in MATLAB.  The series of FSK-modulated packets was demodulated with 

the envelope detector and quadrature receiver, both with and without the hard limiter, as de-

scribed in Section 3.3.6.  Detection of PSK packets was accomplished via the correlation receiver, 

also described in Section 3.3.6.  The BER of each packet was computed, and then the average 

BER for that trial was calculated. 

 The simulated BER was obtained by first estimating the channel‟s impulse response.  As 

in Section 2.2.2, the impulse response was obtained by cross-correlating the received signal with 

the complex conjugate of the reference signal, which in this case is the 5-second LFM chirp sig-

nal at start of each trial.  The impulse response was then convolved with the signal containing the 

waveform of a single modulated packet.  Note that only one packet is needed here, since only one 

impulse response estimate was obtained at the start of the test.  In theory, because the office tub is 

a time-invariant environment, the estimated impulse response should remain nearly constant over 

the duration of a trial. 

3.4.2 Analysis 

 Appendix C lists the results of each of the fifteen trials in this experiment.  Tables 3-2 

through 3-5 summarize the comparison of BERs obtained with data transmission versus convolu-

tion with the channel‟s impulse response.  The percent difference is defined merely as the differ-

ence between the two BERs.  The standard formula for percent error cannot be applied, since it 

requires the measured and expected values to be positive (> 0).  In general, the average difference 

is quite good, varying only approximately 3.34%.  There are several cases where the difference is 

0.  These instances appear mostly at the slower bit rates, where the symbol duration easily ex-

ceeds the channel‟s delay spread.  There are also a few cases of large discrepancies of greater 

than 20% appearing in seemingly random positions in the tables of Appendix C. 
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Table 3-2: Overall comparison of BERs obtained with data transmission versus convolution. 

Overall % Difference 

Average Min Max Std. Dev. 

3.34 0.00 33.31 8.21 

 

Table 3-3: Comparison of BERs obtained with data transmission versus convolution, per carrier fre-

quency. 

 % Difference 

Frequency (Hz) Average Min Max Std. Dev. 

7,500 1.74 0.00 12.47 3.35 

12,500 3.66 0.00 33.31 8.16 

17,500 4.61 0.00 27.69 8.11 

 

Table 3-4: Comparison of BERs obtained with data transmission versus convolution, grouped by the 

type of modulation-demodulation. 

   % Difference 

Modulation Demodulation Implementation Average Min Max Std. Dev. 

FSK 

Envelope Detector 
Amplitude Comp. 2.60 0.00 20.16 5.22 

Hard Limiter 3.34 0.00 27.69 7.28 

Quadrature Receiver 
Default 4.35 0.00 24.41 7.36 

Hard Limiter 2.89 0.00 24.31 6.14 

PSK Correlator N/A 3.51 0.00 33.31 9.01 

 

Table 3-5: Comparison of BERs obtained with data transmission versus convolution, grouped by bit 

rate. 

 % Difference 

Bit Rate (bps) Average Min Max Std. Dev. 

250 0.00 0.00 0.00 0.00 

500 2.03 0.00 24.41 6.29 

1250 7.50 0.00 27.69 9.72 

2500 3.91 0.00 13.25 4.21 

>3000 3.25 0.00 33.31 8.41 
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 The amount of error increases with the carrier frequency.  Since there should be no corre-

lation between frequency and error, it becomes necessary to investigate the channel more closely.  

The frequency response of the impulse response estimate obtained at the start of each test can be 

computed using an FFT algorithm, which is accomplished easily with MATLAB‟s freqz function.  

Figure 3-16 shows the impulse response obtained during one of the tests.  Figure 3-17 shows the 

frequency and phase response of the system derived from the impulse response in Figure 3-16.  

Over the course of the entire experiment, the impulse response and corresponding frequency and 

phase responses remained nearly constant.  Upon viewing Figure 3-17 it makes sense why there 

are more errors at 12.5 kHz and 17.5 kHz than at 7.5 kHz.  There are dips of more than 20 dB in 

the frequency response centered on 12.7 kHz and 17.5 kHz, which naturally give rise to drastic 

changes in the phase response at those frequencies.  While the impulse response estimates do cap-

ture these properties, it is clear that they are not perfectly accurate, as the simulated bit error rates 

deviate from the measured values. 

 
Figure 3-16: Impulse response of office test tub during validation experiment. 
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Figure 3-17: Frequency and phase response of office test tub, derived from impulse response in Fig-

ure 3-16. 

There is no obvious conclusion to draw about the discrepancies between the simulated 

and measured values grouped by the modulation-demodulation routine.  The average difference is 

within a few percent for all tests, though PSK demodulation does possess the worst-case value of 

the experiment.  There is, however, a trend seen with increasing bit rate.  The simulator is quite 

accurate for slow data rates, where the symbol duration exceeds the delay spread of the channel.  

At 250 bps and 500 bps, except for the FSK trial at 12.5 kHz bps with the default quadrature re-

ceiver, the simulated and measured bit error rates are identical.  For this particular case, it seems 

that the simulator exaggerates the dip in the frequency response at 12.7 kHz, since it yields a BER 

of about 24% while the BER for real packets was actually 0%.  When using the impulse response, 

the tone representing a „1‟ is so much lower in amplitude than the tone representing a „0‟ that in-

correct correlation produces a bit error in favor of „0‟ 50% of the time a „1‟ should be present, 

resulting in the simulated BER of 24%.  Note that the particular sequence of bits used in this ex-

periment contains a 50.4/49.6 mixture of zeros and ones, respectively.  As an aside, this one case 
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demonstrates the value of the hard limiter for FSK-based receivers.  At higher bit rates, the simu-

lator‟s accuracy decreases.  It produces the worst results at 1250 bps, when the symbol duration is 

roughly equal to the delay spread of the channel. 

In conclusion, using impulse response measurements to simulate a time-invariant channel 

is very accurate when the symbol duration exceeds the multipath spread of the channel and no ISI 

exists.  The accuracy drops slightly when the symbol time is less than the channel‟s delay spread.  

This method, however, becomes error-prone when the symbol duration is very close to the length 

of the delay spread, since a small discrepancy between the estimated and actual channel responses 

can lead to very different results at the receiver.  The simulator seems to perform well for both 

FSK and PSK signals transmitted at various carrier frequencies, though it works best when the 

system has linear frequency and phase response.  Unfortunately, there is no data describing the 

simulator‟s accuracy for time-variant channels such as the Hudson River estuary.  The model 

might be too simplistic to generate accurate BERs without the inclusion of varying impulse re-

sponse estimates and fading.  More details about future plans are found in Section 3.7. 

3.5 Implementation 

OMNeT++ 4.0 was chosen as the platform for this simulation because of its clean archi-

tecture and relative ease of development.  Other platforms were considered and eliminated be-

cause of significant shortcomings.  OPNET is perhaps the largest commercial network simulator 

[OPNET 2010].  While this software seems to do everything one could imagine, it is not easy to 

develop, debug, or maintain OPNET applications.  In fact, after taking a 3-day course at their 

headquarters, one leaves with only a superficial understanding of where controls are located in 

the GUI and how to produce some performance metrics for a simple network topology.  Worse, 

OPNET has numerous parameters, and it is not obvious which ones should be changed to model 

certain behaviors.  Additionally, OPNET results are hard to understand because details about 



122 
 

 
 

what is going on under the hood are concealed.  ns-2 is popular in the academic world, but has 

been in a state of transition for several years since the introduction of ns-3.  While development 

of both platforms is ongoing, ns-3 is not backwards compatible with ns-2, nor does it have all the 

models that ns-2 currently has.  In addition, it is not uncommon to see disorganized class files 

with large blocks of code commented out in ns-2.  (For instance, look at mac/channel.cc in ns-

allinone-2.34.)  Therefore, like OPNET, ns leaves one feeling uneasy about the clarity, accuracy, 

and interactions among the underlying algorithms that produce simulation results.  Finally, the 

architecture is not conducive to building a channel and PHY layer simulation.  Currently, the 

channel object tied in with MAC layer objects, which violates conventional software engineering 

paradigms that promote creating independent, reusable blocks of code.  Should PHY also be 

squeezed into the same location, as it was in Aqua-Sim, since it logically fits between the channel 

and MAC layer?  While doing so is easier than restructuring the code, it perpetuates bad practice 

which will render creating future enhancements even more difficult.  

OMNeT++, on the other hand, had just been upgraded to version 4.0 in February 2009 

and provides a simple solution to the problem at hand.  Unlike the other platforms, OMNeT++ is 

only a discrete event simulator.  It does not include default network algorithms that the user must 

override, modify, or parameterize in unobvious ways.  It offers a clean framework that allows 

developers to create network models as they see fit.  Since the model described in this chapter 

relies on MATLAB for the computationally heavy signal processing routines, a simple frame-

work for the channel and various network layers is all that is needed.  Thus, development moved 

forward with OMNeT++ and was integrated with MATLAB for the modulation, convolution, and 

demodulation routines. 

While it is beyond the scope of this dissertation to explain every detail about the imple-

mentation of the simulator, it is worth mentioning the configuration and the means of integrating 
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OMNeT++ and MATLAB.  Note that the following description applies to the Linux operating 

system.  The simulation can also run on Windows, but the minor variations in the process are not 

described here.  Ubuntu Linux 9.10 x64, MATLAB R2009b, and OMNeT++ 4.0 were used.  The 

simplest way to explain this material is to walk through an example.  As previously mentioned, 

all signal processing routines are implemented in MATLAB, including the simple function for 

calculating transmission loss across the channel, as described in Section 3.3.2.  Figure 3-18 shows 

the body of the function, which is saved in the M-file getTransmissionLossDB.m. 

 

function transmissionLossDB = getTransmissionLossDB(linkDistanceInMeters) 

    transmissionLossDB = 10 * log10(linkDistanceInMeters) + ... 

                         0.058 * linkDistanceInMeters;  

 

Figure 3-18: MATLAB code to calculate the transmission loss over the acoustic link. 

 This function and several others are grouped together into one library libchannel for the 

underwater channel, while a separate group of files comprises libphy, the library responsible for 

tasks associated with the PHY layer of a network stack.  Continuing with the transmission loss 

example, the MATLAB compiler mcc generates the libchannel.so library.  It is convenient to 

write a short shell script for MATLAB build process, as in Figure 3-19.  For clarity when specify-

ing library paths in OMNeT++, the shared objects are copied into the lib directory, which is lo-

cated within the main directory of the simulation.  

 

#!/bin/sh 

 

rm -f *~ 

 

mcc -B csharedlib:libchannel -v getAverageSoundVelocity.m getNoiseLevelDB.m 

getTransmissionLossDB.m simulateChannel.m fconv.m 

 

mcc -B csharedlib:libphy -v modulateFSK.m demodulateFSK.m modulatePSK.m       

demodulatePSK.m chirp.m filterSignal.m hardlimit.m 

 

cp libchannel.so libphy.so ../lib/ 

 

Figure 3-19: Bash shell script for building MATLAB shared libraries used in the simulator. 
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 After compiling the libraries, the next step is to integrate the MATLAB functions with 

the OMNeT++ simulation.   Since the initialization functions must be called once and only once, 

the calls cannot be placed inside the constructor for the UWChannel or Phy objects, since every 

time an object is created the initialization routine will run.  The following solution circumvents 

this problem: 

1) Create a main.cc file for the simulation.  The contents of the file can be identical to that of 

path-to-omnetpp-4.0/src/envir/main.cc, as long as the include path contains all the directories 

required for compilation.  

2) Put the initialization code before the call to setupUserInterface(argc, argv, NULL) and ter-

mination code after it. 

Appendix B.6 lists the code for the main function of the simulation which includes calls to initia-

lization and termination routines. 

 After the libraries are initialized, the exported MATLAB functions can be called from 

OMNeT++.  Input and output parameters are of type mxArray.  Even a simple data type must be 

converted to an array of one element.  Figure 3-20 shows how the function signature for trans-

missionLossDB from Figure 3-18 looks when compiled into a C shared library: 

 

extern LIB_libchannel_C_API bool MW_CALL_CONV 

mlfGetTransmissionLossDB(int nargout, mxArray** transmissionLossDB,  

                         mxArray* linkDistanceInMeters);  

 

Figure 3-20: Function signature for mlfGetTransmissionLossDB in C shared library. 

When calling mlfGetTransmissionLossDB, double linkDistanceInMeters is first converted 

to a scalar, double-precision array x1_ptr.  The output of the function is stored in the reference 

y1_ptr, and the number of output arguments is set to 1.  The output is then converted back to an 

array of doubles via mxGetPr, of which the first and only element is accessed with the array index 

[0].  Finally, the memory is deallocated with calls to mxDestroyArray, and the pointers are set to 
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NULL.  Figure 3-21 shows the C code to obtain the value of transmission loss from the MATLAB 

library. 

 

mxArray *x1_ptr; 

mxArray *y1_ptr = NULL; 

double linkDistanceInMeters = 505; 

double transmissionLossDB; 

 

x1_ptr = mxCreateDoubleScalar(linkDistanceInMeters); 

 

// Call the implementation function for transmission loss 

mlfGetTransmissionLossDB(1, &y1_ptr, x1_ptr); 

transmissionLossDB = mxGetPr(y1_ptr)[0]; 

printf("Transmission loss      : %.2f dB\n", transmissionLossDB); 

 

mxDestroyArray(x1_ptr); x1_ptr = NULL; 

mxDestroyArray(y1_ptr); y1_ptr = NULL; 

 

Figure 3-21: C code that calls the MATLAB library to obtain the value of transmission loss over a 

505-m acoustic link. 

3.6 Simulation Output 

 
Figure 3-22: Graphical representation of OMNeT++ simulation. 
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The OMNeT++ simulation has a graphical representation of the network to visualize how 

packets move among the layers of the network stack, nodes, and channel.  When the simulation is 

active, a red dot moves along the path from source to destination.  Figure 3-22 shows the graphi-

cal representation of the OMNeT++ simulation.  It contains two nodes and tests communication 

from the designated transmitter node[0] to the receiver node[1].  The red dot in the node[0] win-

dow indicates that the packet is passing from the link layer down to the PHY layer of the network 

stack. 

Figure 3-23 depicts the OMNeT++ Tk environment.  The majority of the window is oc-

cupied by a text area which displays the simulation‟s log.  This log contains information about the 

initialization process as well as the creation, departure, and arrival times of packets. 

 
Figure 3-23: OMNeT++ Tk environment. 
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Finally, and most importantly, text output about the channel and BER of packets is dis-

played in the terminal from which the executable was run.  Figure 3-24 shows the output pro-

duced for the second datagram generated by node[0].  The complete set of transmitted bits is dis-

played, followed by the source level, transmission loss, and noise level of the channel, which are 

used to compute the SNR of the received waveform.   The filename of the randomly chosen im-

pulse response is printed, followed by the BER, received bits, and expected and actual payloads.  

Additional pieces of relevant information, including the type of modulation and number of sam-

ples before and after convolution, are displayed for completeness. 

Generating datagram 2... 

Bits sent: 

10001010:01010100:00000000:10111110:00000000:00000000:00000000:00000001 

01010100:01101000:01100101:00100000:01010101:00101110:01010011:00101110 

00100000:01001000:01101111:01110101:01110011:01100101:00100000:01101111 

01100110:00100000:01010010:01100101:01110000:01110010:01100101:01110011 

01100101:01101110:01110100:01100001:01110100:01101001:01110110:01100101 

01110011:00100000:01110110:01101111:01110100:01100101:01100100:00100000 

01111001:01100101:01110011:01110100:01100101:01110010:01100100:01100001 

01111001:00100000:01110100:01101111:00100000:01100001:01100100:01101101 

01101111:01101110:01101001:01110011:01101000:00100000:01010111:01101001 

01101100:01110011:01101111:01101110:00100000:01101111:01110110:01100101 

01110010:00100000:01110100:01101000:01100101:00100000:01100011:01101111 

01101101:01101101:01100101:01101110:01110100:00101110:00100000:01001100 

01101111:01110101:01110000:01100001:01110011:01110011:01101001:00100000 

01110011:01100001:01101001:01100100:00100000:01110011:01101001:01101101 

01101001:01101100:01100001:01110010:00100000:01100010:01100101:01101000 

01100001:01110110:01101001:01101111:01110010:00100000:01110111:01101111 

01110101:01101100:01100100:00100000:01100010:01100101:00100000:01110111 

01101001:01101100:01100100:01101100:01111001:00100000:01110101:01101110 

01100001:01100011:01100011:01100101:01110000:01110100:01100001:01100010 

01101100:01100101:00100000:01101001:01101110:00100000:01110100:01101000 

01100101:00100000:01010110:01101001:01110010:01100111:01101001:01101110 

01101001:01100001:00100000:01001000:01101111:01110101:01110011:01100101 

00100000:01101111:01100110:00100000:01000100:01100101:01101100:01100101 

01100111:01100001:01110100:01100101:01110011:00101110: 

PSK-modulated data in 166800 samples. 

Source level           : 120.00 dB 

Transmission loss      : 56.32 dB 

Noise level            : 33.82 dB 

SNR                    : 29.86 dB 

Opening IR file data/IR_505m/IR_277.wav. 

Number of samples in packet after convolution: 176400 

Demodulating 190 bytes. 

BER: 4.67% 

Bits received: 

10001010:01010100:00000000:10111110:00000000:00000000:00000000:00000001 

01010110:01101000:01110101:00100000:01010101:00101111:01010011:00101111 

00100000:01001000:01101111:01110101:01110011:01100101:00100000:01101111 

Signal/channel properties 

Bit error rate 
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01110111:00110000:01010010:01110101:01110000:01110010:01110101:01110011 

01100101:00101111:00110100:00110001:01110100:01101001:01110111:01110101 

00110011:00100000:01110111:01101111:01110100:00110101:01100100:00100000 

01111001:01100101:01110011:01110100:00100101:01110010:01110100:00100001 

01111001:00100000:01110100:01101111:00100000:01100001:01100100:01101101 

01101111:01101110:00101001:01110011:01101000:00100000:01010111:01101001 

01101100:01110011:01101111:01101110:00100000:00101111:01110110:00110101 

01110010:00100000:01110100:01101000:01110101:00100000:01100011:01101111 

01101101:01101101:01100101:00101110:00110100:00101111:00100000:01001100 

00101111:01110101:01110000:01100001:01110011:01110011:01101001:00100000 

01110011:01100001:01101001:01100100:00100000:00110011:01101001:01101101 

01101001:01101100:00100001:01110010:00100000:01100011:01110101:00101000 

01100001:01110111:00101001:01101111:01110010:00100000:00110011:01101111 

01110101:00101100:00100100:00100000:01100011:01110101:10100000:01110111 

01101001:01101100:01110100:00101100:00111001:00100000:01110101:01101111 

00110001:01100011:01100011:01100101:00110000:01110100:00110001:01100011 

01101100:00100101:00100000:01101001:01101111:00100000:01110100:00101000 

01100101:00100000:01010110:01101001:01110010:01110111:00101001:01101110 

00101001:01100001:00100000:01001000:01101111:01110101:01111001:01100101 

00100000:01101111:01110111:00110000:01000100:00100101:01101110:01110101 

01100111:01100001:01110100:00100101:01110011:00101110: 

Expected payload: The U.S. House of Representatives voted yesterday to admonish 

Wilson over the comment. Loupassi said similar behavior would be wildly 

unacceptable in the Virginia House of Delegates. 

Actual payload  : Vhu U/S/ House ow0Rupruse/41tiwu3 wot5d yest%rt!y to admon)sh 

Wilson /v5r thu comme.4/ L/upassi said 3imil!r cu(aw)or 3ou,$ cu.wilt,9 

uo1cce0t1cl% io t(e Virw)n)a Houye ow0D%nugat%s. 

Figure 3-24: Terminal output of OMNeT++ simulation. 

3.7 Future Work 

There are several obvious opportunities for future work, all of which are somewhat inter-

related.  The first place to start is in evaluating the current single impulse response model for a 

time-variant channel such as the Hudson River estuary.  It would no longer be sufficient to use a 

long chirp at the start of each test.  The conditions will change much too rapidly for the impulse 

response estimate to remain valid for several minutes.  In reality the conditions change too rapidly 

to remain constant across the duration of a packet transmission, with a coherence time of only 50 

ms (see Section 2.5.9).  However, since signals used to accurately estimate the channel cannot be 

transmitted at the same time as packets, the next best approach is to estimate the channel from the 

pilot signal used at the start of each packet.  The rest of the procedure would remain intact, where 

the measured BER for each packet is compared to that which is obtained when convolving an 

impulse response estimate with the original waveform.  Again, because packets are so much 
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longer than the channel‟s coherence time, it is expected that this method will not provide accurate 

results. 

If the current model is indeed inaccurate, the next step would be to look into two dimen-

sional convolution, as in Diamant and Chorev‟s IRM evaluation [Diamant 2005].  Several details 

must be analyzed carefully, including how to accurately construct the matrix of impulse response 

estimates.  The creators of IRM, unfortunately, do not provide such details in their paper.  For 

instance, if impulse response estimates are taken every 50 ms, is the matrix constructed so that the 

50-ms blocks of samples all get the same copy of the impulse response estimate?  Is there a way 

to interpolate the values between estimates to provide a more gradual transition between the mea-

surements?  If so, can the values be computed in reasonable time?  As of now, these questions 

have not been investigated, at least not from the perspective of underwater acoustic communica-

tion. 

The next iteration of the simulation must also account for multipath fading.  Jakes‟s mod-

el can simulate a Rayleigh fading channel, MATLAB‟s Communications Blockset can model a 

Ricean fading channel, and Yip and Ng have developed a simulation model for Nakagami-m fad-

ing channels, where m < 1 [Yip 2000], which also covers the Gamma distribution.  It might also 

be possible to use 2D convolution to partially account for fading, as the correlation coefficient 

will change in each impulse response estimate.  Of course, each impulse response estimate must 

not be normalized to the same maximum value.  However, this approach is not nearly as viable as 

the aforementioned models, since there is still only one estimate every 50 ms, and fading takes 

place on a much shorter time scale.  Perhaps interpolated impulse responses can help, but it seems 

that too many interpolated estimates will be required to accurately model fading.  If none of the 

suggested methods work correctly, one can always take the amplitude values from the recorded 

comb signal and apply them to the waveform in the simulator. 
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When the answers to these questions are known, or at least understood in greater detail, 

the simulator can be extended with other types of modulation techniques and methods of equali-

zation.  Upon the completion of that phase, the simulator would contain a very thorough model of 

a specific underwater channel and PHY layer of a network stack.  Looking forward, one can envi-

sion using the simulator to test various MAC protocols or even investigate the potential benefits 

of cross-layer protocols.  OMNeT++ makes such extensions easy. 
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Chapter 4  

Softwater Modem 

A Software Modem for Underwater Acoustic Communication 

4.1 Overview 

The Softwater Modem is a software modem for underwater acoustic communication that 

enables users to run applications on the familiar sockets interface without any additional hard-

ware except for transducers and associated amplification.  Data transmission and acquisition is 

performed by any ordinary sound card.  A standard TCP or UDP transport protocol runs on top of 

IP, which runs on top of custom datalink and PHY layers that constitute the modem and are im-

plemented in Java outside the operating system.  The modem process is seamlessly made part of 

the protocol stack via the Linux TUN driver as shown in Figure 4-2.  The modem uses FDMA 

with binary and 4-FSK in any frequency band supported by the computer‟s sound card and can 

run at any bit rate supplied by the user.  The transmitter sends a per-packet LFM chirp signal that 

the receiver uses for packet synchronization as well as channel estimation, with the option of ap-

plying impulse response estimates to channel equalization.  Frames can contain up to 255 bytes 

and are encoded with Reed-Solomon codes, for which the user can specify the number of parity 

bytes.  The chapter describes in detail the architecture of this system, which currently demon-

strates two-way communication as well as real-time channel estimation techniques.  Additionally, 

it provides estimates of the processing time required per frame and the performance as given by 

decreasing BERs for increasing normalized SNRs in an AWGN channel. 

4.2 Motivation 

As discussed in Chapter 2, there is no such thing as a typical underwater acoustic com-

munication channel.  The large variation in channel conditions among different locations – espe-
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cially the difference between deep water and shallow water – suggest that vastly different com-

munication parameters (modulation technique, frequency band, frame length, error correction 

methods, etc.) would be optimal for different locations.  Existing acoustic modems are imple-

mented at least partly with custom hardware and paired with a fixed-point or floating-point DSP 

[Benthos 2010; Freitag 2005].  Such solutions typically offer a limited choice of operating para-

meters.  Furthermore, in the case of commercial products, modem parameters are often chosen 

based on worst-case channel assumptions in order to maximize the modem‟s utility, necessitating 

a series of products, each tailored to specific environments that vary in depth, link distance, and 

expected severity of multipath [LinkQuest 2010], and each likely to be ill-suited for channels 

with properties differing from those for which the modem is customized.  While logical, this is an 

unfortunate development because flexible, optimized communication is especially important in 

the bandwidth-limited underwater environment. 

Recently there has been great interest in “software defined radio,” (SDR) wherein soft-

ware performs packet transmission / receipt functions and adjusts RF communication parameters 

on the fly in response to changing channel conditions.  The success of SDR as applied to RF has 

been constrained by the fact that RF channels operate at high speed (e.g., multi-megabits per 

second), placing very tight real-time constraints on the necessary signal processing.  The under-

water acoustic environment is better suited for an SDR-like approach because acoustic link 

speeds are so much slower than RF links.  There is plenty of time for modern hardware to per-

form even sophisticated signal processing needed to adapt to the challenging and rapidly chang-

ing underwater channel. 

Accordingly, an all-software acoustic modem was built for underwater operation.    The 

modem is able to sense and adapt to its environment on a very short time scale.  In particular, a 

“sounding signal” precedes every packet and is used by the receiver to compute and apply the 
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channel‟s inverse impulse response to the modulated data signal that follows the sounding signal.  

In this way the receiver mitigates channel distortion on a packet-by-packet basis.  While this ap-

proach is not as rapidly adaptive as a hardware DFE that can update filter taps on a symbol-by-

symbol basis, data suggest that this approach should be able to cope with channels where the co-

herence time is at least on the order of the duration of a communication packet, as seen in places 

like the Massachusetts Bay east of Boston [Yang 2004]. 

Besides being able to adapt to channel conditions, a software modem offers the advantage 

of being far less costly than current hardware devices – such as the Benthos 013424 LF (9-14 

kHz) omnidirectional modem at $8800/pair as of April 2009 – and of being easily configurable.  

Modem parameters can be selected to match the environment, thereby avoiding worst case as-

sumptions and making communication more efficient.  The carrier frequency, symbol time, and 

LFM chirp guard time are among the parameters that users can adjust.  Moreover, this modem has 

the added benefit of being written in open source software that requires no license fees. 

An additional advantage of this software architecture is that it supports TCP/IP based 

communication.  Applications written to use the popular sockets interface can run unaltered on 

top of the modem layer, any number simultaneously.  The effect is as if an Ethernet had been re-

placed by a (much slower) acoustic channel. 

4.3 Related Work 

There are several underwater acoustic modems in existence, either as commercial produc-

tions or research efforts, which make use of custom hardware to varying degrees.  According to 

the specifications, the Benthos ATM series operates at baud rates of 140 – 15,360 bps, has a BER 

of 10
-7

 with high SNR, offers data redundancy, 1/2 rate convolutional coding, multipath guard 

period selection, and MFSK and PSK modulation schemes, and commonly operates over dis-

tances of 2 – 6 km [Benthos 2010].  LinkQuest offers many different UWM models, each of 
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which is tailored for a specific channel including “near vertical or horizontal” links and “long-

range shallow to very shallow environments with very harsh multipath conditions” [LinkQuest 

2010].  Some UWM models work in depths of 7000 meters while others are good for only 200 

meters.  Some have a payload data rate in the range of 80 to 320 bps, while others offer rates as 

high as 14,000 bps.  DSPComm‟s AquaComm modem uses DSSS/OFDM to achieve data rates of 

100 – 480 bps (depending on the model) with a BER of at most 10
-6

 over links of up to 3 km 

[DSPComm 2010].  The Tritech AM-300 Acoustic Modem features two types of signaling to 

cover different types of channels [Tritech 2010].  Its spread spectrum option works between 25 – 

100 bps, offering reliable data transfer in channels with SNR as low as -6 dB.  The QPSK data 

link operates between 8 – 16 kbps, allowing for the transfer of high volumes of data.  The specifi-

cations state that when using an array of hydrophones at the receiver, it is possible to transfer data 

over a 2-km horizontal link at 16 kbps. 

The WHOI Micro-Modem, whose features and performance was discussed in detail in 

Section 2.5.11, offers FH-FSK signaling at a default data rate of 80 bps and BPSK and QPSK 

signaling with data rates up to 5 kbps [Freitag 2005].  The Reconfigurable Modem (rModem) 

[Sozer 2006] was built to simplify experimental studies of algorithms on all layers of the network 

stack with rapid prototyping via Simulink tools [Simulink 2010].  It has four input and output 

channels, an anti-aliasing filter, 240 kHz analog-to-digital converters (ADC) and digital-to-analog 

converters (DAC), automatic gain control (AGC), an FPGA and floating point DSP, and onboard 

memory.  It was tested in Woods Hole, MA, in 2006 in a store-and-forward network of four 

nodes.  Intermediate nodes time-reversed the signal before retransmitting it with a new preamble 

and training sequence.  However, demodulation and detection, the most basic functionality of a 

modem, was not tested and left as the subject of a future experiment, which does not seem to have 

been conducted (or may just be undocumented). 
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Several purely software-defined modem implementations also exist.  Soundmodem was 

one of the first packet radio platforms made to run on a standard PC with a sound card [Sailer 

2000].  It offers several modulation techniques, including FSK, PSK, and QPSK, and can be in-

terfaced with the AX.25 stack on Windows, Linux, or UNIX.  Soundmodem was tested in the 

office tub environment as well as with a cable attached directly from the line output of one com-

puter to the mic input of the other computer.  In general, the software seems to have synchroniza-

tion problems, causing very few packets to be received correctly.  A thorough walk-through of 

the code for FSK did not produce a clear picture of what was going wrong with reception but did 

reveal some programming errors. 

With J-QAM [Olds 2008], high data rates (up to 400 kbps) have been achieved by using a 

PC sound card with RF transmission.  Since the phase-coherent detection methods necessary for 

QAM modulation generally work well only in vertical underwater acoustic channels with little 

multipath distortion [Pelekanakis 2003] and funding ran out, J-QAM was not investigated further.  

However, if funding becomes available for more experiments in the Hudson River estuary, J-

QAM is among the applications to test because it is well-written and thoroughly documented, and 

would lay to rest questions about using QAM in extremely shallow, horizontal channels. 

GNU Radio [GNU 2010] is probably the largest, most flexible SDR platform to date.  It 

features numerous modulation/demodulation and signal processing techniques for radio commu-

nication and integrates easily with the Universal Software Radio Peripheral (USRP), an 

ADC/DAC motherboard with a USB interface [Ettus 2010].  Signal processing blocks are written 

in C++, while flow graphs that connect the signal processing blocks are written in Python.  Figure 

4-1 shows a flow graph constructed in GRC for a GMSK
12

 modulator.  Unfortunately, GNU Ra-

                                                             
12 Minimum Shift Keying (MSK) is a digital modulation scheme where the phase remains continuous while the fre-

quency changes.  To reduce side lobes in MSK transmissions, MSK is augmented with a pre-modulation Gaussian-

shaped low-pass filter.  This enhanced technique is known as Gaussian Minimum Shift Keying (GMSK). 
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dio has a steep learning curve and is in a constant state of change.  When it was first considered 

for use in the Softwater Modem, noncoherent FSK was the modulation technique of choice, since 

it is robust to multipath fading channels.  However, FSK modulation was removed from GNU 

Radio‟s source tree because it didn‟t work correctly and no one was maintaining it.  In addition, 

GNU Radio is limited in that it operates on streams of data.  It is not oriented to processing flows 

of variable-length packets commonly used in underwater acoustic communication systems. 

 
Figure 4-1: GRC (GNU Radio Companion) flow graph [Miller 2009]. 

As GNU Radio matures, some efforts are being made to use it for underwater acoustic 

communication, as in the Underwater Acoustic Networking plaTform (UANT) developed by the 

Networked and Embedded Systems Laboratory at UCLA [Torres 2009].  UANT uses GNU Radio 

to achieve configurability at the physical layer.  TinyOS has been adopted for the use on the net-

work platform, since it provides a full network stack.  UANT affords users the flexibility to 

change the properties of the acoustic modem at run time to adapt to the dynamic characteristics of 
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the underwater channel, though none of this functionality is automated.   In reality, UANT seems 

to be a nice GUI on top of a network stack built upon GNU Radio.  Its limitations are inherently 

those of GNU Radio. 

Several other standalone modem prototypes have been developed over the years.  The 

prototype from UCSB [Fu 2006] combines DSP techniques, hardware-software integration, and 

network protocols, but operates at a fixed rate of 161 bps.  The design from Yuan-Ze University 

uses a PC sound card with MATLAB as an SDR OFDM communication system [Hwang 2003]; 

however, the system cannot operate in real time.  Furthermore, the initial code optimizations per-

formed at UCONN [Yan 2007] did not result in a real-time DSP-based OFDM receiver.  Finally, 

by 2009 researchers at UCONN produced the Aqua-fModem, a real-time OFDM modem proto-

type that uses a bandwidth of 5.5 kHz and yields an overall data rate of 3.1 kbps after 1/2 rate 

nonbinary LDPC (low-density parity-check) coding and QPSK modulation [Zhou 2009].  No oth-

er information about this system is available. 

Since each of the aforementioned systems has limitations, the focus here is shifted to the 

implementation of a flexible software modem that performs well in various types of underwater 

acoustic channels while requiring reasonable amounts of processing power, as those found in an 

average laptop PC.  The original goal was to develop a platform with several modula-

tion/demodulation techniques that would be able to sense and adapt to the channel‟s changing 

conditions and propagate that information to neighboring nodes via a handshaking protocol that 

runs on a control channel.  However, since the amount of development time proved to be too 

much for one person, the project was scaled back.  While the modem, presently called the Soft-

water Modem, currently offers only binary and 4-FSK, it has adjustable parameters that allow it 

to perform well in many environments, in particular, shallow water channels.  In addition to carri-

er frequency and symbol rate parameters, the Softwater Modem has parameters for setting the 
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threshold for frame detection and length of the chirp signal and guard time, toggling between half 

and full duplex, adjusting the number of payload and parity bytes, and properly estimating the 

channel‟s impulse response as to apply an inverse filter (zero-forcing equalizer).  All of these fea-

tures can be exploited in future work that proceeds with the original goal for the project.  Fur-

thermore, unlike most previous efforts, the Software Modem permits users to run existing TCP/IP 

applications across nodes in the system. 

4.4 System Architecture 

4.4.1 Software Architecture 

 

Figure 4-2: Software architecture of acoustic modem, with arrows depicting the flow of data generat-

ed by the network application through the system and down to the sound card, where it is emitted as 

an analog bandpass modulated waveform. 

The overall architecture of the system includes three layers of user space applications.  

The highest layer is the application itself, which can use either TCP or UDP.  The lowest layer is 

the Java application that implements the functionality of an acoustic modem.  Between the two is 

the tunnel relay application, which is responsible for passing IP datagrams between the network 
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application and Java modem.  Figure 4-2 depicts the overall architecture of the system and shows 

how each of the component applications is linked. 

The tunnel relay application is written in C and utilizes the Linux TUN device [Kras-

nyansky 2010].  If use with Windows is required, the tunnel relay program can be rewritten to 

exploit the Microsoft TUN Miniport Adapter instead.  The TUN device is a virtual point-to-point 

network device designed to provide low level kernel support for IP tunneling.  It interfaces with a 

user-space application via the /dev/net/tunX character device and the tunX virtual point-to-point 

interface. A user-space application can write datagrams to /dev/net/tunX, and the kernel will re-

ceive them from the tunX interface.  Similarly, every datagram that the kernel writes to the inter-

face can be read from the /dev/net/tunX device. 

The tunX device is bound to a private IP address in the 10.0.0.0 – 10.255.255.255 range 

to avoid interference with applications running on the Internet.  The route command informs the 

kernel that datagrams destined for a particular host (or network) should be associated with the 

tunX device.  Therefore, it is possible to build a routing table specifically for the independent 

acoustic network. 

The tunnel relay application is also responsible for setting the MTU of the tunX device.  

This process informs the kernel about how to break large data streams into datagrams of manage-

able size, most often of which are very small in comparison to Ethernet (<255 bytes vs. 1500 

bytes) for transmission through the underwater channel.  An application that wishes to have pre-

cise control over packet construction can query the OS to determine the MTU of the tunX device 

to ensure it constructs datagrams that fit into MTU bytes. 

The tunnel relay application communicates with the Java modem via UDP, as sockets are 

the only form of IPC that works with Java.  Both the tunnel relay application and Java modem 

bind to the local loopback IP address, but with different port numbers, to allow full-duplex com-
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munication between the two processes.  Thus, the Java modem listens on one socket for data-

grams from the tunX device that need to be transmitted acoustically, while it sends datagrams that 

have been received acoustically on the other socket where the tunnel relay program is listening. 

To better understand how this system works, it is helpful to trace the steps that a message 

takes as it passes from the network application to the sound card.  When the network application 

has data to send, it writes the data to a socket.  The data passes to the Linux kernel, where trans-

port and IP headers are added.  If the destination address is one mapped to the TUN device, the 

datagram will arrive there, enabling the tunnel relay application to forward it to the UDP port 

where the Java modem is listening.  If the destination address is not mapped to the TUN device, 

the datagram will go directly to the link layer of the kernel and out through the computer‟s net-

work interface card, allowing the acoustic network to peacefully coexist with other networks on 

the system.  The Java modem adds its own link layer headers to the datagram, and converts the 

frame into a modulated acoustic waveform.  The modem then writes the acoustic signal to the 

output device in the Java Sound API, which actually makes use of ALSA (Advanced Linux 

Sound Architecture) in the JVM.  The ALSA library traps to the kernel, which handles device 

access, and sends the signal to the output of the sound card.  The process by which the system 

receives an acoustic frame is essentially the reverse of the aforementioned description. 

4.4.2 Associated Hardware 

Two laptops have been used in the development of this system, a Lenovo T60p and a 

newer T500.  The T60p has a T7200 dual-core Intel processor running at 2.0 GHz, 2 GB of mem-

ory, and an ADI1981 codec running on top of the integrated Intel high-definition audio (HDA) 

controller.  The sound card supports a maximum sampling rate of 48 kHz.  The T500 has a P8400 

dual-core Intel processor running at 2.26 GHz, 2 GB of memory, and a Conexant CX20561 codec 

paired with an Intel HDA controller.  This integrated sound card supports a maximum sampling 
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rate of 192 kHz.  For the sake of comparing software performance statistics, a desktop PC with a 

Q6600 quad-core Intel processor over-clocked to 3.0 GHz, 8 GB of memory, and integrated 

ADI1988/HDA audio was also brought in.  All three systems were running Ubuntu Intrepid 8.10 

with gcc 4.3.2, ALSA 1.0.17, and Java 1.6.0 Update 13. 

4.5 Modem Architecture 

The modem portion of the system is written entirely in Java.  While the use of Java does 

come at a cost to execution speed, the laptops are still able to keep up with continuously demodu-

lating packets.  Moreover, the benefits of platform independence; modular, extensible code; and 

relatively fast development time further support the use of Java for the modem prototype. 

 
Figure 4-3: Processing blocks within the Java modem. 

The modem functionality is divided into two main tasks, transmit and receive, which can 

be executed in parallel.  Both of these functions are implemented as a series of stages which are 

processed by threaded objects.  Pairs of adjacent stages communicate via a thread-safe queue, 

where one stage places its output on the queue for the next stage to use as its input.  Figure 4-3 

summarizes the processing blocks that comprise the Java acoustic modem. 

4.5.1 Transmitter Design 

The transmitter consists of three stages – the source encoder, the modulator, and playback 

mechanism.  The encoder reads incoming datagrams from the UDP socket attached to the tunnel 

relay application, wraps them in a frame header, and optionally applies Reed-Solomon codes.  
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The modulator converts the incoming byte-oriented data frame into symbols of 0s and 1s for bi-

nary FSK (or the 2-bit symbols 00, 01, 10, and 11 for 4-FSK) and then translates the symbols into 

the samples of the sine wave that correspond to the frequency representing a given symbol.  The 

modulator also prepends an LFM chirp signal and guard time block to the beginning of a data 

frame for synchronization and channel estimation purposes at the receiver.  Finally, the transmit-

ter takes the buffered modulated signal and sends it to the sound card for playback.  The transmit-

ter can also optionally record each outgoing modulated data frame in a wav file for future refer-

ence. 

4.5.2 Receiver Design 

The receiver consists of three stages as well – the correlator, demodulator, and decoder.  

The correlator continually reads blocks of samples from the sound card.  The block itself must be 

twice as long as the LFM chirp signal that precedes each packet, so that the chirp signal is guar-

anteed to fit within two consecutive blocks.  For every incoming block, the correlator concate-

nates it with the previous block before using cross-correlation to detect the start of a frame.   If a 

frame is detected, the exact number of samples within a frame is buffered and then placed on the 

queue for the demodulator to pick up. 

The demodulator converts an acoustic signal into a bit stream of 0s and 1s.  It optionally 

takes the impulse response obtained during frame detection, inverts it with the Levinson-Durbin 

algorithm [Proakis 2007], and convolves it with the signal as a means of performing channel 

equalization on a packet-by-packet basis.  Regardless of whether inverse filtering is applied, the 

demodulator bandpass filters the signal, holds a tournament to see which of the carriers has the 

strongest signal over the duration of a symbol, and outputs the corresponding symbol (0 or 1 for 

binary FSK; 00, 01, 10, 11 for 4-FSK).  It also optionally computes the SNR for the frame before 

placing it on the queue for the decoder to pick up.  At the user‟s request, the demodulator can also 
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record each incoming unprocessed frame and demodulated frame in a separate wav file and each 

impulse response and inverse impulse response in a csv file, which can be post-processed with the 

MATLAB scripts included with the source code. 

The decoder applies Reed-Solomon codes to an incoming data frame and allows the user 

to know if no errors were detected, if errors were found and corrected, or if errors were found but 

could not be corrected.  The decoder also verifies the CRC
13

 in the header before extracting the 

frame payload, or IP datagram, and sending it out to the TUN device via the UDP socket. 

4.6 Frame Format 

All data frames begin with an LFM chirp signal followed by a block of silence, known as 

the guard time.  The duration of both the chirp signal and guard time can be configured by the 

user.  Modulated data appears after the guard time, beginning with the frame header.  The 4-byte 

frame header format is extremely simple, containing only two fields, a 16-bit CRC and 16-bit 

length attribute.  All other information relevant for communication is contained in the headers for 

the IP and the transport layer, whether TCP or UDP.  The IP header is 20 bytes, while the TCP 

and UDP headers are 20 and 8 bytes, respectively.  The TCP header can be longer if options are 

enabled within the operating system‟s network stack.  The actual payload appears after all head-

ers and can fill the remaining bytes of the frame up to the 255-byte limit. 

Reed-Solomon (R-S) codes can be enabled by the user.  The R-S codes can contain an 

arbitrary number of parity bytes as long as the sum of parity, header, and payload bytes does not 

exceed the 255-byte limit.  Since R-S codes operating on 8-bit symbols can have n = 2
8
-1 = 255 

symbols per block, 255 was chosen as the upper bound on frame size.  In comparison with the 

frame sizes supported by the Micro-Modem [Freitag 2005], 255 is a reasonable limit and should 

                                                             
13 When there are too many errors in the frame, R-S can pick a valid codeword that is not the codeword that was trans-

mitted.  With a valid but incorrect codeword selected, R-S will not indicate any error syndrome, and the only way to 

know for certain whether the data is correct is with some other detection method, like a CRC [Jacobsen 2008]. 
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be more than adequate for underwater channels requiring use of noncoherent FSK demodulation.  

If enabled, the R-S parity bytes appear after the frame header and before the IP header.  Figure 

4-4 depicts the format of a data frame for the Softwater Modem.  Note that the sizes of the blocks 

within the diagram are not drawn to scale. 

 
Figure 4-4: Format of a data frame. 

4.7 Signal Processing 

As described in Section 3.3.4, the modulation index is set to 1 to obtain reasonable per-

formance with noncoherent FSK detection.  In fact, this index value corresponds to the minimum 

tone spacing for noncoherent FSK signaling, which occurs when 

             (4.1) 

where f0 is the frequency of the tone representing a „0‟, f1 is the frequency of the tone representing 

a „1‟, and T is the symbol duration, equivalent to 1/R, so that the two tones remain orthogonal 

[Sklar 2001].  The same modulation index applies when the modem is operating in 4-FSK mode. 

The LFM chirp signal that precedes a frame is generated as an array of floats according to 

the formula 

                
 

 
      (4.2) 

where f0 is the starting frequency at time t = 0 and k is the rate of frequency increase.  The chirp 

signal covers only the frequency band required by the data modulation, or     , starting fd Hz 

(see Section 3.3.4) lower than the lowest tone in the transmission.  If a slow data rate results in a 

chirp less than 1 kHz wide, the chirp is expanded to cover 1 full kHz in order to result in a mana-

geable autocorrelation function for use in frame synchronization.  A second buffer containing the 
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samples of the reference LFM chirp used to mark incoming data frames is precomputed and 

stored at the receiver. 

 

Figure 4-5: Capture/correlate block of receiver. 

As seen in Figure 4-5, the receiver continuously reads a block of samples from the audio 

device and concatenates it with the previously read block before cross-correlating the samples 

with the reference LFM chirp signal.  The implementation is based on that in Numerical Recipes 

[Press 2007], using FFT to first convert the signals into the corresponding frequency-domain re-

presentations, multiplying the transforms, and returning the result to a time-domain signal via 
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IFFT.  The FFT-based cross-correlation routine is orders of magnitude faster than the time-

domain approach, which cannot be executed in real time. 

The maximum, minimum, and average (excluding the absolute value of the maximum 

and minimum) values of the signal returned by the cross-correlation routine are then computed.  

If the current iteration is the first time the correlation exceeds the user-defined multiple of the 

average correlation, or if the maximum value is greater than the maximum found during the pre-

vious iteration, the index of the maximum value is marked as the potential starting point of a data 

frame.  If the user specified that the modem should look for significant arrivals occurring before 

the strongest component, the modem does so and buffers the resulting estimate of the channel‟s 

impulse response at the time the data frame is received.  A data frame is deemed present when the 

starting sample is marked and the current maximum does not exceed the threshold or the previous 

maximum.  At this point, the modem begins copying incoming samples to a buffer that is the size 

of is MTU + 4 bytes.  Once all the samples have arrived, the receiver passes the data buffer, im-

pulse response estimate, and last noise amplitude level to the demodulator block for processing.  

If no data frame is present during a given iteration of the loop, the samples are assumed to be 

noise, and the noise amplitude is computed and stored, overwriting the previous value. 

The demodulator block is comprised of a series of stages that implement noncoherent 

FSK detection via the envelope detector.  Figure 4-6 illustrates the demodulation process for bi-

nary FSK demodulation, which has the same basic structure as 4-FSK demodulation. 
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Figure 4-6: Stages of noncoherent FSK detection. 

The first stage, which serves as a means of channel equalization on a frame-by-frame ba-

sis, is optional.  If enabled by the user, this stage takes the impulse response estimate obtained via 

the cross-correlation of the received LFM chirp and reference LFM chirp and inverts it by means 

of the Levinson-Durbin algorithm.  As long as the channel remains fairly constant over the dura-

tion of a data frame and the SNR > 12 dB to prevent noisy impulse response estimates, this me-

thod works to mitigate ISI induced by multipath arrivals and problems with the frequency re-

sponse of the transducers.  

Figure 4-7 shows the time-domain view of a portion of a data frame that passed through 

an air-based acoustic channel between a pair of desktop Accent Acoustics PC speakers and an 

Altec Lansing microphone.  The data rate was 2 kbps (symbol time of 0.5 ms), the carrier tones 
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were 4 and 6 kHz, and the 50-ms LFM chirp preceding the data transmission swept from 3 to 7 

kHz.  The chirp signal exhibits a dip around 4 kHz, the same frequency used to represent „0‟ data 

bits.  Figure 4-8 shows the delay spread of the channel.  Because of this unequal representation of 

tones, this data frame could not be successfully demodulated.  There were 64 bit errors out of 

1184 bits, producing a BER of 5.41%.  The default 16 parity bytes were transmitted as well, but 

even the R-S codes could not save this frame. 

 

 
Figure 4-7: Unequalized reception of data frame. 

 

Figure 4-8: Delay spread of channel in 3-7 kHz 

band. 

 

Figure 4-9: Inverse impulse response of channel 

in 3-7 kHz band. 
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Figure 4-10: Reception of equalized data frame. 

The Levinson-Durbin algorithm inverts the channel‟s impulse response h by solving for 

hinv in the Toeplitz system         , where R is the symmetric Toeplitz matrix containing the 

positive lags of h‟s autocorrelation function and q is the Dirac delta function.  The inverse im-

pulse response is then convolved with the samples containing the LFM chirp and modulated data 

via FFT convolution.  Figure 4-9 depicts the inverted form of the impulse response.  Figure 4-10 

displays the equalized time-domain view of the same data frame shown in Figure 4-7.  It is appar-

ent that the inverse filter does not exhibit linear phase, since the guard time between the chirp and 

the modulated data does not have 0 mean.  However, since the modem has been designed to work 

with noncoherent detection, this filter attribute does not pose a problem.  Also, the spectral splat-

ter associated with rapidly turning the transmitter on and off becomes more evident after applying 

the inverse filter, with large spikes appearing at the beginning and end of the acoustic signals.  

While spectral splatter does not degrade performance in a point-to-point system, it is something 

to consider when other devices begin sharing the channel, especially one that is bandwidth-

limited.  Since Reed-Solomon codes perform well when errors occur in bursts, they have been 

built into the system as a means of combating spectral splatter from neighboring devices. 

Bandpass filtering is the first mandatory step in the modem‟s implementation of noncohe-

rent detection.  When using binary FSK, the incoming signal is passed through two separate fil-

ters (four in 4-FSK) to eliminate signals outside the band corresponding to the tones representing 
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bits.  As described in Section 3.3.6, second-order IIR filters based on the design in [Smith 2003] 

are used.  The filters have been designed to operate with bandwidth 1/T centered on the tones 

representing 0s and 1s. 

Upon completion of the filtering stage, the resulting signals are passed to the envelope 

detection stage, which first applies the Hilbert transform to obtain the imaginary part of a signal 

containing only real values.  The envelope is then obtained by applying the formula in Equation 

(2.22). 

Regardless of whether the inverse filter is enabled, the resulting envelopes undergo nor-

malization.  This processing block first determines the maximum value in each envelope and then 

scales the other envelope(s) so that the maximums are all equal.  In practice, this over-simplified 

“equalizer” helps to reduce ISI caused by transducers with a non-linear frequency response. 

The amplitude comparator produces another intermediate signal that shows which 

envelope contains greater amplitude at every sample in the signal.  For binary FSK, the compara-

tor subtracts one envelope from the other.  With 4-FSK, a simple tournament is held for each 

sample to see which of the signals possesses the greatest amplitude, producing a new signal with 

only 4 possible values. 

Finally, the demodulator makes a decision as to which symbol was present during a given 

time period.  The modem samples many times per symbol period in an attempt to make the best 

decision, at virtually no cost in execution time.  Starting at samples corresponding to 60% of the 

duration of the symbol and running up to the last sample of the symbol, the modem counts how 

many samples correspond to each symbol type.  The one with the highest count is selected.  In 

practice, sampling in the second half of the symbol produces better results, since the recursion of 

the IIR filter leads to a “ramp-up” period at the beginning of the pulse and because the filter often 
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exhibits “ringing” shortly after the ramp-up time.  Thus, one can effectively work around the neg-

ative effects of IIR filters while benefitting from their computational efficiency. 

4.8 Control Interface 

The modem allows the user to alter its functionality by editing a text file containing 

name/value pairs.  Upon startup, the modem parses the properties file and uses the values of the 

parameters for its operation.  The following options are supported: 

CHIRP_MS = <integer>.  CHIRP_MS indicates the length in milliseconds of the LFM chirp sig-

nal that precedes frame transmission.  If the INVERSE_FILTER option is enabled, the value 

should not exceed the coherence time of the channel in order to ensure the channel‟s characteris-

tics have not changed during the transmission of the sounding signal.  Ideally, the signal should 

be as short as possible, with enough samples to provide a high value of correlation in the presence 

of a data frame.  50 ms works well in most applications. 

BASE_FREQUENCY_RX / TX = <integer>. This number is the frequency in Hz of the lowest 

carrier in the received/transmitted signal. 

FULL_DUPLEX = <TRUE/FALSE>.  FULL_DUPLEX indicates whether or not the modem 

can receive and transmit simultaneously.  For testing purposes, if full-duplex operation is enabled, 

setting BASE_FREQUENCY_TX to the same frequency as BASE_FREQUENCY_RX will al-

low the modem to demodulate its own transmissions. 

GUARD_MS = <integer>.  GUARD_MS is the amount of silence that appears after the chirp 

signal and before the modulated data.  This silence is necessary to obtain a clean impulse re-

sponse estimate. GUARD_MS also dictates the maximum length for which the impulse response 

(and possibly its inverse) will be computed.  Therefore, it should be set be set to a value that ex-

ceeds the multipath spread of the channel. 

IMPULSE_RISE_MS = <decimal>.  In case the strongest arrival is not the first component of 

the impulse response, setting this option allows the modem to look for components before the 

main arrival that exceed the threshold of ¼ the intensity (-6 dB) of the main arrival.  This option 

is useful when computing the inverse impulse response of the channel.  The value is usually 

small, not exceeding 1 ms. 

INVERSE_FILTER = <TRUE/FALSE>.  INVERSE_FILTER indicates whether or not to apply 

Levinson-Durbin matrix inversion for channel equalization on a frame-by-frame basis. 

NUMBER_OF_CARRIERS = <2/4>.  This option indicates if binary or 4-FSK is to be used. 



152 
 

 
 

PARITY_BYTES = <integer>.  PARITY_BYTES indicates the number of bytes used as parity 

within R-S codes.  The maximum frame size is 255 bytes, of which 4 bytes are used for the frame 

header, 20 for the IP header, and 20 for TCP header (and more if options are enabled).  Therefore, 

the value must be set accordingly to maintain data flow.  16 bytes is the default value. 

PAYLOAD_SIZE_IN_BYTES = <integer>.  This number indicates the payload size, the size of 

the frame excluding the 4 byte header.  The maximum frame size is 255 bytes, for which the sum 

of PARITY_BYTES, PAYLOAD_SIZE_IN_BYTES, and the 4 byte frame header cannot ex-

ceed. 

SYMBOLS_PER_SECOND = <integer>. This option represents the symbol rate of the modem.  

For binary FSK, the symbol rate is equivalent to the bit rate, and for 4-FSK, it is equal to ½ the 

bit rate. 

THRESHOLD = <integer>. This parameter adjusts the mechanism for frame detection.  Frames 

are detected in a block of samples if correlation = THRESHOLD   (average correlation minus 

the absolute value of the maximum and absolute value of the minimum within the block). 

Other parameters supported by the modem change the sampling rate, output verbosity, number of 

channels, and endianness of the samples being read from the sound card and determine whether 

SNR should be computed for every data frame received. 

4.9 Performance 

4.9.1 Computational Performance 

Table 4-1: Processing time of subroutines. 

 

Desktop 

Laptop 

T60p 

Laptop 

T500 

Transmit    

a. Modulate 8.00 12.00 13.40 

b. Encode Reed-Solomon 9.33 74.40 82.60 

Sum (a:b) 17.33 86.40 96.00 

Frame duration 1244.00 1244.00 1244.00 

Comp Time/Signal Length 1.39 % 6.95 % 7.72 % 

Receive    

c. Cross-correlation 2.36 5.03 4.46 

Block length 85.33 85.33 85.33 

Comp Time/Signal Length 2.77% 5.89% 5.23% 

Demodulate    

d. Levinson-Durbin 3.40 3.80 5.33 

e. FFT convolution 29.80 65.00 43.83 

f. Bandpass filtering 2.60 3.60 4.16 

g. Envelope detection 61.60 117.60 84.50 
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h. Normalizer 1.60 3.70 1.50 

i. Comparator 0.40 2.00 0.33 

j. Bit Decision 0.40 1.60 0.50 

k. Decode Reed-Solomon 1.33 21.40 17.40 

l. Write 2 wav files 2.00 3.40 2.60 

m. Write IR data to csv file 16.33 55.40 36.00 

Sum (d:m) 119.46 277.50 196.15 

Frame duration 1244.00 1244.00 1244.00 

Comp Time/Signal Length 9.60 % 22.31% 15.77% 

The performance of the Softwater Modem has been characterized in terms of its CPU ex-

ecution time and bit error rate.  Table 4-1 lists the running times of various methods within the 

Java code in milliseconds on three different platforms.  JRat [JRat 2010] was used to profile the 

application.  After compilation the class files were injected with instructions by JRat to enable the 

collection of performance statistics.  The modem was then run through the JRat agent with the 

key options set as follows: 

CHIRP_MS = 50 

FULL_DUPLEX = TRUE 

GUARD_MS = 10 

INVERSE_FILTER = TRUE 

NUMBER_OF_CARRIERS = 2 

PARITY_BYTES = 16 

PAYLOAD_SIZE_IN_BYTES = 128 

SAMPLING_RATE= 48000 

SYMBOLS_PER_SECOND = 1000 

For each platform, the values shown in Table 4-1 are the averages computed over 5 frame 

transmissions.  Each frame consisted of a 4-byte frame header, 16 parity bytes, and 128 bytes of 

payload, for a total of 1184 bits.  At 1000 bits/second, the modulated block of data takes 1184 ms 

to transmit.  The total frame transmission time is equal to 1184 ms plus 50 ms for the LFM chirp 

signal plus another 10 ms for the guard time, for a total of 1244 ms.  As can be seen in the table, 

the time to encode the data with R-S codes and modulate the entire block is longest on the T500, 

taking 96 ms, or 7.72% of the total frame transmission time. 

Data from the sound card was read in blocks of 4096 samples, which correspond to ap-
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proximately 85.33 ms.  As stated earlier, two blocks are concatenated before performing the 

cross-correlation operation.  Thus, performing cross-correlation on 8192 samples appears to ex-

ecute slowest on the T60p, consuming 5.03 ms on average.  This time represents 5.89% of the 

duration of an incoming block of audio samples. 

The demodulation procedure operates on the modulated data portion of the frame, ex-

cluding the chirp signal and guard time.  The Levinson-Durbin algorithm, which is O(n
2
), oper-

ates on GUARD_MS ms of samples.  In this performance evaluation, 10 ms of guard time sam-

pled at 48 kHz equates to 480 samples.  The T500 was the slowest platform for this operation, 

taking 5.33 ms.  The profiling was repeated for a 20 ms guard time, or 960 samples, where matrix 

inversion took 13.50 ms on average.  For small numbers of samples, the computation time for 

Levinson-Durbin matrix inversion seems quite practical, especially given that it is running though 

a Java VM. 

The two subroutines that consistently consume the most time on each system are convo-

lution and envelope detection.  This is not surprising, as each requires computing the forward and 

inverse FFT of 56,832 samples.  Faster FFT implementations do exist.  Since the worst-case de-

modulation time is already about 22% of the duration of the data frame with binary FSK (and 

more with 4-FSK), it might be beneficial to investigate using other FFT implementations, such as 

FFTW [FFTW 2010] which now includes Java wrappers. 

The performance numbers here indicate that, even with Java, the modem is able to oper-

ate in real time.  The demodulation time is clearly less than the transmission delay.  Despite the 

claims for real-time operation, the modem exhibits significant latency, given by the row 

Sum(d:m) in Table 4-1.  Since the entire frame is buffered before any processing occurs, there is a 

feeling of sluggishness when operating the system in an environment where the processing time 

masks propagation delay.  This condition is less noticeable when operating at high data rates, 
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where the processing time is a small fraction of a second, and exacerbated at low data rates, 

where there are many more samples per symbol to process.  The demodulated frame can appear at 

the application more than a full second after the last sample of the frame is received.  Unfortu-

nately, there is no easy way to change this behavior; the receiver would need to be redesigned 

from the bottom up. 

4.9.2 Performance in AWGN Channel 

The modem‟s implementation of noncoherent FSK detection is basically the same as the 

envelope detector described in Section 3.3.6; therefore, its performance in the office test envi-

ronment is similar to that observed during the validation procedure for the simulator.  (See Ap-

pendix C for the BERs obtained at various carrier frequencies and symbol rates.) 

The best-case scenario would have been to test the Softwater Modem in the Hudson Riv-

er estuary to see how well it works in a time-variant channel.  The Hudson experiment would 

have tested the modem‟s implementation of frame synchronization, FSK detection, and channel 

equalization.  However, since funding dissipated, an alternate test had to be devised. 

The alternate test was to determine how the modem performed in an AWGN channel.  In 

order to compare the actual performance with the theoretical limit, the BER of modem was plot-

ted for various bit-normalized SNR, or Eb/N0, values.  Eb/N0 is defined as energy per bit to noise 

power spectral density ratio.  As Eb/N0 increases, the probability of a bit error decreases at a rate 

that produces a curve having a waterfall-like shape (when the x-axis is in dB scale).  The solid 

lines in Figure 4-11 show the theoretical relationship between BER and Eb/N0 for noncoherent 

FSK detection.  Note that in this test, other factors such as fading, ISI from multipath propaga-

tion, and impulsive, possibly colored noise are not taken into consideration.  Thus, computing the 

actual BER versus Eb/N0 serves as a simple, controlled means of validating the receiver‟s imple-

mentation.    
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The procedure for estimating the BER versus Eb/N0 was to attach a 12” 3.5 mm cable 

from the headphone output of the T60p laptop to the microphone input of the T500 and repeated-

ly transmit a series of packets at increasing output levels.  Anytime the T500 was used as the 

transmitter, the noise floor rose by approximately 10 dB.  When using the T60p as the transmitter, 

the noise floor remained relatively constant (within 2 dB).  The computer‟s noise followed a nor-

mal distribution and had no peaks in the transmission band, providing an approximation of how 

the modem would perform in an AWGN channel. 

To estimate SNR, the PSD of both noise and the modulated signal was computed.  Upon 

figuring out which array elements correspond to frequencies in the modulated signal's bandwidth, 

the dB level for both noise and signal in only the relevant frequency band was averaged, as in 

Equation (3.2), and the difference of the averages provided the SNR value.  The relationship be-

tween SNR and Eb/N0 is defined as 

                  (4.3) 

where W is the bandwidth of the modulated signal and R is the bit rate.  Since the ratio W/R is 

always 2 for orthogonal noncoherent FSK signaling with minimum tone spacing, Eb/N0 turns out 

to be 3 dB greater than the computed SNR. 

Table 4-2: Performance test results for binary FSK. 

Eb/N0 BER Bits Sent Error Bits 

4.13 0.337 103,600 34,926 

4.66 0.296 103,600 30,677 

5.32 0.162 103,600 16,742 

6.76 0.0777 103,600 8,045 

8.52 0.0174 103,600 1,807 

10.40 0.00717 518,000 3,715 

11.51 0.00289 518,000 1,498 

12.74 0.000251 518,000 130 

14.27 2.220E-5 1,036,000 23 

15.47 1.931E-6 1,036,000 2 
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Table 4-3: Performance test results for 4-FSK. 

Eb/N0 BER Bits Sent Error Bits 

  4.95 0.286     103,600 29,652 

  6.16 0.169     103,600 17,492 

  7.38 0.0533     103,600  5,521 

  9.25 0.00829      207,200  1,718 

 11.44 5.598E-4  414,400   232 

 12.67 1.081E-4 1,036,000   112 

 14.01 2.684E-5 1,554,000  41 

 15.43 1.689E-5 2,072,000  35 

 16.76 4.826E-6 2,072,000  10 

 

Binary FSK was used at 2 kbps, with tones at 10 and 12 kHz.  The relevant band covered 

9-13 kHz.  Inverse filtering was disabled.  Data frames contained 2072 bits.  The threshold for 

detection was increased as SNR increased in order to prevent false frame detections.  The test was 

repeated with 4-FSK, again at 2 kbps and in the same frequency band, with tones at 9.5, 10.5, 

11.5 and 12.5 kHz.  Tables 4-2 and 4-3 list the observed BER vs. Eb/N0 for binary and 4-FSK, 

respectively, while showing exactly how many bits were transmitted and how many were re-

ceived erroneously.  The performance test results for both modulation techniques are similar, 

though up to 2,072,000 bits were transmitted at higher signal strengths when testing 4-FSK.  It is 

acknowledged that the confidence intervals for the lower BERs are very wide, since obtaining 

tight intervals would take on the order of days at the modem‟s slow bit rate.  These estimates 

hopefully still offer some insight into the expected performance of the Softwater Modem‟s im-

plementation of binary and 4-FSK compared to the theoretical limit.  As seen in Figure 4-11, bi-

nary FSK closely approximates the theoretical curve while the performance of 4-FSK is a bit 

lacking, especially with higher signal strengths.  With 4-FSK, it is believed that the system is ap-

proaching the distortion limit of the channel, which makes it harder to distinguish closer spaced 

tones than further spaced tones. 
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Figure 4-11: Empirical and theoretical BER vs. Eb/N0. 

4.10 Limitations 

It is well known the TCP/IP is far from ideal for underwater acoustic communication 

[Akyildiz 2006].  The additional overhead of relatively large headers increases the transmission 

time of a packet.  More importantly, packet retransmissions and automatic acknowledgment are 

problematic, even in the simplest case of point-to-point communication between two nodes.  For 

example, the TCP standard sets the initial round-trip time to 3 seconds.  Given the slow data rates 

and long propagation delays of underwater acoustic systems, 3 seconds is not enough time to es-

tablish a connection.  Therefore, the client begins retransmitting SYN packets before the server‟s 

SYN+ACK even reaches the client.  Since the mechanism for changing the initial round trip time 

(irtt) is broken in the Linux kernel, the Softwater Modem has trouble working with TCP/IP; it 

almost appears as though a SYN flood attack is taking place.  Thus, UDP, a simpler transport pro-

tocol that uses a smaller header and does not bother with packet retransmissions, is preferred for 

demonstrating the Softwater Modem‟s capabilities. 
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4.11 Future Work 

One direction for future work is to augment the repertoire of modulation and signal 

processing techniques, currently limited to noncoherent binary and 4-FSK based on envelope de-

tection.  While the simulator was described before the Softwater Modem in this dissertation for 

greater readability, its development actually succeeded that of the modem.  In fact, the modem 

was really the author‟s first step into building a working PHY layer implementation.  So, there are 

many places for improvement, starting with the addition of the methods currently implemented in 

the simulator, such as the more computationally efficient quadrature receiver for FSK detection, 

hard limiter for correcting disparities between amplitudes of different tones, and correlation re-

ceiver for PSK.  It would also be beneficial to develop a LMS-based adaptive DFE for PSK re-

ception. 

Another logical extension is to build a feedback mechanism that can update the modem's 

parameters on the fly as a function of observations of changing channel conditions.  As stated 

earlier, the original goal was to develop a handshaking protocol on a control channel that propa-

gates information about the modem‟s optimal configuration to other nodes in the network.  After 

adding more modulation and signal processing techniques, development of these adaptive, “cog-

nitive” features can commence. 

Because of its LFM chirp mechanism and ability to record frames and save impulse re-

sponse estimates to file, the modem can serve to some extent as a scientific instrument.  Accor-

dingly, it can be used to perform long-term SNR and impulse response capture experiments in 

interesting bodies of water in order to learn more about the effects of inconstant phenomena such 

as tides, weather, noise, and wakes on acoustic communication performance.  Furthermore, these 

impulse response estimates can be used as input for the simulator. 
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Chapter 5  

Summary 

5.1 Evaluation of Thesis 

The work in this dissertation is based on channel estimation.  The thesis states that chan-

nel estimation techniques can be employed in both a network simulator and software modem to 

quantify the channel-induced distortion of acoustic signals and thereby to improve the quality of 

simulation and adaptability of modulation and demodulation, respectively.  This thesis has been 

shown to be true. 

The impulse response measurements taken in the Hudson River estuary serve as the input 

to the network simulation so that BERs are no longer based on simple assumptions about the 

channel.  For time-invariant channels, the BER of a packet computed by the simulator matches 

within a few percent of the BER of a packet that is actually transmitted through a test environ-

ment physical channel. 

The software modem computes the channel‟s impulse response at the beginning of a 

packet, inverts it, and convolves it with the rest of the waveform to mitigate ISI, irregularities in 

the frequency response, and other signal distortions imposed by the channel.  As a result, in shal-

low-water channels with properties that change relatively slowly, the modem is able to sense and 

adapt to the environment and obtain data rates that would otherwise have resulted in numerous bit 

errors because of multipath propagation. 

5.2 Contributions 

The work presented in this dissertation covers three separate but related areas of under-

water acoustic communication, namely channel characterization, network simulation, and soft-

ware defined radio.  The following contributions have been made to the research community: 
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1) Characterization of the Hudson River estuary at link distances of 200 and 505 meters.  

Analysis is highly detailed and includes the scattering function, multipath intensity pro-

file, spaced-frequency correlation function, Doppler power spectrum, spaced-time corre-

lation function, and fading distribution.  It is clear that the Hudson is a multipath fading 

channel with a short coherence time. 

2) The procedure for carrying out channel characterization has been described in great de-

tail, possibly more thoroughly than in any other work.  The importance of pre-experiment 

analysis of sounding signal properties and the bounds of a sounding signal‟s length have 

been made clear.  Moreover, for each of the characterization functions, the formula has 

been translated into code, making the connection between textbook descriptions and prac-

tical implementation easy to follow.  

3) A network simulation written in OMNeT++ and MATLAB that simulates the underwater 

acoustic channel as well as the PHY layer of a network stack.  This simulation provides 

more accurate BERs than previous attempts that use SNR as the only input parameter.  

The software‟s modular design makes it easy to add different types of receivers for com-

parison purposes.  Furthermore, the simulation technique affords the opportunity to simu-

late any body of water if the measurements are available for its input.  This capability 

will make it easy to compare the effects of different channels on a communication sys-

tem.  Similarly, the simulation facilitates the study of choosing the best communication 

technique for a particular environment. 

4) A software-driven binary and 4-FSK modem with a zero-forcing equalizer and Reed-

Solomon codes.  This modem offers many configurable parameters, including carrier fre-

quency, symbol rate, and guard time, that enable it to work well in a variety of environ-
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ments.  It interfaces with the Linux TUN driver to enable unmodified network applica-

tions to run over an acoustic link. 

5) Software for the channel characterization, network simulation, and software modem, key 

parts of which are printed in the appendix.  The code will help others understand how to 

translate abstract formulas and vague block diagrams found in many textbooks into work-

ing systems. 
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Appendix A  

Source Code for Chapter 2 

A.1 Chirp Signal Generation 
 

function [y, time] = chirp(startFreq, endFreq, samplingRate, numSeconds, me-

thod) 

%CHIRP generates an ascending chirp signal. 

%   Y = CHIRP(startFreq, endFreq, samplingRate, numSeconds) 

%   where startFreq and endFreq (endFreq > startFreq) are the starting and 

%   ending frequencies specified in Hz, samplingRate is the sampling rate 

%   in Hz of the signal to be generated, and numSeconds is the duration of 

%   the signal in seconds, returns a linear frequency modulated complex- 

%   valued chirp signal. 

% 

%   Y = CHIRP(startFreq, endFreq, samplingRate, numSeconds, method) 

%   specifies alternate chirp methods. 

%   Available methods are 'linear' and 'hyperbolic'. The default is 

%   'linear'. 

% 

%   [Y, TIME] = CHIRP(...) returns a vector of time indices in seconds 

%   (TIME). 

  

    if (nargin < 4) 

        error('Too few arguments specified in function.'); 

    end 

     

    if (nargin > 5) 

        error('Too many arguments specified in function.'); 

    end     

  

    if (nargin == 4) 

        method = 'linear'; 

    end 

  

    time = 1/samplingRate : 1/samplingRate : numSeconds; 

    if (strcmp(method, 'linear') == 1) 

        beta = (endFreq - startFreq) / numSeconds; 

        y = exp(1j * (2 * pi * (0.5 * beta * time.^2 + startFreq * time))); 

    elseif (strcmp(method, 'hyperbolic') == 1) 

        k = (endFreq - startFreq) / (endFreq * numSeconds); 

        a = -2 * pi * startFreq / k; 

        y = exp(1j * (a * log(1 - k * time)));         

    else 

        error('Unknown chirp type %s.', method); 

        return; 

    end 

 

A.2 Comparison of Autocorrelation Function of Various Sounding Signals 
 

% Author: Brian Borowski 

% Created: 01/18/2008 

% Last modified: 01/27/2008 

% Compares autocorrelation function of several sounding signals. 
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%% Start with a clean slate. 

clc; 

clear all; 

close all; 

  

%% Initialization. 

carrierFreq = 12000; 

  

% For BPSK/DSSS: 

% - symbolsPerSecond must evenly divide samplingRate and carrierFreq. 

% - The bandwidth of the main lobe will be (2 x symbolsPerSecond) Hz, 

%   centered on carrierFreq. 

symbolsPerSecond = 12000; 

samplingRate = 48000; 

samplesPerSymbol = samplingRate/symbolsPerSecond; 

  

load mse_ao_m511; 

sequence = mse_ao_m511(1,:); 

  

%% Generate signals. 

hfmChirp = real(chirp(5000, 20000, samplingRate, 0.05, 'hyperbolic')); 

lfmChirp = real(chirp(5000, 20000, samplingRate, 0.05, 'linear')); 

  

lengthOfSequence = length(sequence); 

totalSamples = samplesPerSymbol * lengthOfSequence; 

t = 1:totalSamples; 

carrier = cos(2.0 * pi * carrierFreq * t / samplingRate); 

bpskSignal = zeros(1, totalSamples);  

pos = 0; 

index = 1; 

for i = 1:totalSamples 

    bpskSignal(i) = carrier(i) * sequence(index); 

    pos = pos + 1; 

    if (pos == samplesPerSymbol) 

        pos = 0; 

        index = index + 1; 

    end 

end 

  

whiteNoise = wgn(1, 0.05 * samplingRate, 1); 

  

% Use Zero-Pole-Gain design to filter white noise. 

Wn = [5000/(samplingRate/2) 20000/(samplingRate/2)]; 

[z, p, k] = butter(10, Wn, 'bandpass'); 

[sos, g] = zp2sos(z, p, k); 

Hd = dfilt.df2sos(sos, g); 

filteredWhiteNoise = filter(Hd, whiteNoise); 

  

%% Plot autocorrelation functions. 

figure; 

[auto, lags] = xcorr(hfmChirp, 'coeff'); 

time = lags / samplingRate * 1000; 

plot(time, auto); 

xlim([-2 2]); 

ylim([-1.2 1.2]); 

seconds = length(hfmChirp) / samplingRate; 

if (seconds < 1) 

    signalLengthStr = sprintf('%.1f ms', seconds * 1000); 

else 
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    signalLengthStr = sprintf('%.1f s', seconds); 

end 

graphTitle = sprintf('Autocorrelation of HFM Chirp 5-20 kHz, %s', ... 

                     signalLengthStr); 

title(graphTitle, 'FontWeight', 'bold'); 

xlabel('Delay (ms)'); 

ylabel('Correlation Coefficient'); 

  

figure; 

[auto, lags] = xcorr(lfmChirp, 'coeff'); 

time = lags / samplingRate * 1000; 

plot(time, auto); 

xlim([-2 2]); 

ylim([-1.2 1.2]); 

seconds = length(lfmChirp) / samplingRate; 

if (seconds < 1) 

    signalLengthStr = sprintf('%.1f ms', seconds * 1000); 

else 

    signalLengthStr = sprintf('%.1f s', seconds); 

end 

graphTitle = sprintf('Autocorrelation of LFM Chirp 5-20 kHz, %s', ... 

                     signalLengthStr); 

title(graphTitle, 'FontWeight', 'bold'); 

xlabel('Delay (ms)'); 

ylabel('Correlation Coefficient'); 

  

figure; 

[auto, lags] = xcorr(bpskSignal, 'coeff'); 

time = lags / samplingRate * 1000; 

plot(time, auto); 

xlim([-2 2]); 

ylim([-1.2 1.2]); 

seconds = length(bpskSignal) / samplingRate; 

if (seconds < 1) 

    signalLengthStr = sprintf('%.1f ms', seconds * 1000); 

else 

    signalLengthStr = sprintf('%.1f s', seconds); 

end 

graphTitle = sprintf('Autocorrelation of DSSS/BPSK Signal, %s', ... 

                     signalLengthStr); 

title(graphTitle, 'FontWeight', 'bold'); 

xlabel('Delay (ms)'); 

ylabel('Correlation Coefficient'); 

  

figure; 

[auto, lags] = xcorr(filteredWhiteNoise, 'coeff'); 

time = lags / samplingRate * 1000; 

plot(time, auto); 

xlim([-2 2]); 

ylim([-1.2 1.2]); 

seconds = length(filteredWhiteNoise) / samplingRate; 

if (seconds < 1) 

    signalLengthStr = sprintf('%.1f ms', seconds * 1000); 

else 

    signalLengthStr = sprintf('%.1f s', seconds); 

end 

graphTitle = ... 

   sprintf('Autocorrelation of Bandpass Filtered White Noise 5-20 kHz, %s', ... 

           signalLengthStr); 

title(graphTitle, 'FontWeight', 'bold'); 
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xlabel('Delay (ms)'); 

ylabel('Correlation Coefficient'); 

  

figure; 

[auto, lags] = xcorr(whiteNoise, 'coeff'); 

time = lags / samplingRate * 1000; 

plot(time, auto); 

xlim([-2 2]); 

ylim([-1.2 1.2]); 

seconds = length(whiteNoise) / samplingRate; 

if (seconds < 1) 

    signalLengthStr = sprintf('%.1f ms', seconds * 1000); 

else 

    signalLengthStr = sprintf('%.1f s', seconds); 

end 

graphTitle = sprintf('Autocorrelation of White Noise, %s', signalLengthStr); 

title(graphTitle, 'FontWeight', 'bold'); 

xlabel('Delay (ms)'); 

ylabel('Correlation Coefficient'); 

  

%% Compute and plot PSD of each sounding signal. 

h = spectrum.welch; 

hfmHpsd = psd(h, hfmChirp, 'Fs', samplingRate); 

lfmHpsd = psd(h, lfmChirp, 'Fs', samplingRate); 

bpskHpsd = psd(h, bpskSignal, 'Fs', samplingRate); 

filteredWhiteNoiseHpsd = psd(h, filteredWhiteNoise, 'Fs', samplingRate); 

whiteNoiseHpsd = psd(h, whiteNoise, 'Fs', samplingRate); 

  

maxVal1 = max(max(hfmHpsd.Data), max(lfmHpsd.Data)); 

maxVal2 = max(max(bpskHpsd.Data), max(whiteNoiseHpsd.Data)); 

maxVal = max(maxVal1, maxVal2); 

  

figure; 

hold on; 

plot(hfmHpsd.Frequencies/1000, pow2db(hfmHpsd.Data / maxVal), ... 

     'Color', [1 0 0]); 

plot(lfmHpsd.Frequencies/1000, pow2db(lfmHpsd.Data / maxVal), '--', ... 

     'Color', [0 0.5 0]); 

plot(bpskHpsd.Frequencies/1000, pow2db(bpskHpsd.Data / maxVal), ':', ... 

     'Color', [0 0 1], 'LineWidth', 2); 

plot(filteredWhiteNoiseHpsd.Frequencies/1000, ... 

     pow2db(filteredWhiteNoiseHpsd.Data / maxVal), '-.', 'Color', [1 0.5 1]); 

plot(whiteNoiseHpsd.Frequencies/1000, ... 

     pow2db(whiteNoiseHpsd.Data / maxVal), 'Color', [0 0 0]); 

hold off; 

  

legend('HFM Chirp, 5-20 kHz', ... 

       'LFM Chirp, 5-20 kHz', ... 

       'DSSS/BPSK, 12 kHz Carrier', ... 

       'Bandpass Filtered White Noise, 5-20 kHz', ... 

       'White Noise'); 

grid on; 

title('Welch Power Spectral Density Estimate', 'FontWeight', 'bold'); 

xlim([0 samplingRate/1000/2]); 

xlabel('Frequency (kHz)'); 

ylabel('Power/Frequency (dB/Hz)'); 
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A.3 Comparison of Autocorrelation Function of White Noise Signals of Various 

Lengths 
 
% Author: Brian Borowski 

% Created: 02/28/2010 

% Last modified: 02/28/2010 

% Compares the autocorrelation function of two white noise signals, with 

% one being significantly longer than the other. 

  

%% Start with a clean slate. 

clc; 

clear all; 

close all; 

  

%% Generate the white noise signals. 

samplingRate = 48000; 

lengthMsShort = 10; 

shortSignal = rand(1, lengthMsShort * samplingRate / 1000) - 0.5; 

lengthMsLong = 1000; 

longSignal = rand(1, lengthMsLong * samplingRate / 1000) - 0.5; 

  

%% Plot the autocorrelation functions. 

[auto, lags] = xcorr(shortSignal, 'coeff'); 

time = lags / samplingRate * 1000; 

figure; 

plot(time, auto, 'r'); 

[auto, lags] = xcorr(longSignal, 'coeff'); 

time = lags / samplingRate * 1000; 

hold on; 

plot(time, auto, 'b'); 

xlim([-5 5]); 

ylim([-1.2 1.2]); 

title('Autocorrelation of White Noise', 'FontWeight', 'bold'); 

xlabel('Delay (ms)'); 

ylabel('Correlation Coefficient'); 

s1 = sprintf('%d ms', lengthMsShort); 

s2 = sprintf('%d ms', lengthMsLong); 

legend(s1, s2); 

 

A.4 Channel Characterization 
 
% Author: Brian Borowski 

% Created: 07/23/2008 

% Last modified: 02/02/2010 

% Performs channel characterization. 

  

%% Start with a clean slate. 

clc; 

clear all; 

close all; 

  

%% Process the recorded signal. 

recorded_signal_file = 'Recordings/SoundingSignal.wav'; 

[recordedSignal, samplingRate] = wavread(recorded_signal_file); 

totalSamples = length(recordedSignal); 

recordedSeconds = totalSamples / samplingRate; 



168 
 

 
 

nyquistFreq = samplingRate / 2; 

  

%% Process the reference signal. 

referenceSeconds = 0.05; 

referenceSamples = referenceSeconds * samplingRate; 

chirpStartFreq = 0; 

chirpEndFreq = 24000; 

referenceSignal = chirp(chirpStartFreq, chirpEndFreq, ... 

                        samplingRate, referenceSeconds); 

  

%% Plot the autocorrelation of the reference signal. 

[auto, lags] = xcorr(referenceSignal, 'coeff'); 

time = lags / samplingRate * 1000; 

figure; 

plot(time, real(auto)); 

axis([-2 2 -1.2 1.2]); 

s = sprintf('Autocorrelation of LFM Chirp %d-%d kHz, %.1f ms', ... 

            chirpStartFreq / 1000, chirpEndFreq / 1000, ... 

            referenceSeconds * 1000); 

title(s, 'FontWeight', 'bold'); 

xlabel('Delay (ms)'); 

ylabel('Correlation Coefficient'); 

  

%% Plot the envelope of autocorrelation of the reference signal in dB. 

figure; 

plot(time, mag2db(abs(auto))); 

axis([-5 5 -60 0]); 

s = sprintf('Envelope of Autocorrelation of LFM Chirp %d-%d kHz, %.1f ms', ... 

            chirpStartFreq / 1000, chirpEndFreq / 1000, ... 

            referenceSeconds * 1000); 

title(s, 'FontWeight', 'bold'); 

xlabel('Delay (ms)'); 

ylabel('Magnitude (dB)'); 

  

%% Calculate impulse response over time. 

numOfImpulseResponses = min(recordedSeconds / referenceSeconds, 101); 

if (numOfImpulseResponses == 101) 

    recordedSeconds = 5; 

end 

  

seconds = 0.011; 

len = seconds * samplingRate; 

if (mod(len, 2) == 0) 

    len = len + 1; 

end 

impulseResponse = zeros(numOfImpulseResponses, len); 

for i = 1:numOfImpulseResponses 

    snip = recordedSignal((i-1)*referenceSamples+1:i*referenceSamples); 

    temp = fftshift(xcorr(snip, conj(referenceSignal))); 

    impulseResponse(i,:) = temp(1:len); 

end 

  

[maxVal maxIndex] = max(max(abs(impulseResponse))); 

impulseResponse = impulseResponse / maxVal; 

  

%% Plot magnitude levels of main component of impulse response. 

magnitude = abs(impulseResponse(:, maxIndex)); 

time = (0:length(magnitude) - 1) / (1 / referenceSeconds); 

  

figure; 
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plot(time, magnitude); 

title('Magnitude of Strongest Impulse Response Tap', ... 

      'FontWeight', 'bold'); 

xlabel('Time (s)'); 

ylabel('Magnitude'); 

  

disp('Magnitude of Strongest Impulse Response Tap'); 

s = sprintf('       Max: %.4f', max(magnitude)); 

disp(s); 

s = sprintf('       Min: %.4f', min(magnitude)); 

disp(s); 

s = sprintf('      Mean: %.4f', mean(magnitude)); 

disp(s); 

s = sprintf('   Std Dev: %.4f', std(magnitude)); 

disp(s); 

  

%% Plot impulse response over time. 

len = length(impulseResponse(1,:)); 

oneMs = 0.001 * samplingRate; 

  

figure; 

upperBound = 

int32(numOfImpulseResponses*referenceSeconds*(1.0/referenceSeconds)); 

imagesc([-1 (length(impulseResponse(1,:))-oneMs)/(samplingRate/1000)], ... 

        [0 length(impulseResponse(:,1))/(1.0/referenceSeconds)], ... 

        abs(impulseResponse(1:upperBound, 1:len))); 

set(gca, 'ydir', 'normal'); 

title('Impulse Response {\itc}(\tau; {\itt})', 'FontWeight', 'bold'); 

xlabel('[\tau] Delay (ms)'); 

ylabel('[t] Time (s)'); 

zlabel('Normalized Intensity'); 

colorbar; 

  

%% Plot single impulse response. 

ir = real(impulseResponse(1,:)); 

[maxValue mainPeakIndex] = max(ir); 

earlyPeakIndex = find(ir >= 0.25 * maxValue); 

offset = mainPeakIndex - earlyPeakIndex; 

ir = ir(earlyPeakIndex:end); 

ir = ir / max(abs(ir)); 

figure; 

n = (1:length(ir)) * 1000 / samplingRate; 

plot(n, ir); 

axis([0 10 -1 1]); 

title('Impulse Response of Tub', 'FontWeight', 'bold'); 

xlabel('[\tau] Delay (ms)'); 

ylabel('Normalized Amplitude'); 

  

%% Plot frequency and phase response. 

[h w] = freqz(ir, 1); 

f = w / (2 * pi) * samplingRate / 1000; 

magnitude = abs(h); 

stdDev = mag2db(std(magnitude)); 

  

decibel = mag2db(magnitude); 

len = length(magnitude); 

avgDecibel = 10 * log10(sum(10.^(decibel/10))/len); 

decibel = decibel - avgDecibel; 

  

disp('Frequency Response'); 
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s = sprintf('       Max: %.4f dB', max(decibel)); 

disp(s); 

s = sprintf('       Min: %.4f dB', min(decibel)); 

disp(s); 

s = sprintf('      Mean: %.4f dB', 10 * log10(sum(10.^(decibel/10))/len)); 

disp(s); 

s = sprintf('   Std Dev: %.4f dB', stdDev); 

disp(s); 

  

figure; 

subplot(2, 1, 1), 

plot(f, decibel), 

axis([0 f(end) -40 20]), 

title('Frequency Response', 'FontWeight', 'bold'), 

xlabel('Frequency (kHz)'), 

ylabel('Magnitude (dB)'); 

  

phase = angle(h) * 180 / pi; 

subplot(2, 1, 2), 

plot(f, phase), 

xlim([0 f(end)]), 

title('Phase Response', 'FontWeight', 'bold'), 

xlabel('Frequency (kHz)'), 

ylabel('Phase (degrees)'); 

  

%% Plot a single cross-section of the scattering function, at the 

 % time delay with the greatest magnitude. 

 % Do not attempt to reduce side lobes with windowing or by zeroing out 

 % values. 

crossSection = fftshift(fft(xcorr(impulseResponse(:,maxIndex)))); 

maxVal = max(crossSection); 

crossSection = crossSection / maxVal; 

  

lambdaSamples = length(crossSection); 

lowerBound = floor(lambdaSamples / 2); 

upperBound = floor(lambdaSamples / 2); 

if (mod(lambdaSamples, 2) == 0) 

    upperBound = upperBound - 1; 

end 

f = -lowerBound:upperBound; 

lambda = (1 / referenceSeconds / 2) * f / lowerBound; 

  

figure; 

plot(lambda, abs(crossSection)); 

title('Doppler Power Spectrum', 'FontWeight', 'bold'); 

xlabel('[\lambda] Frequency (Hz)'); 

ylabel('Normalized Intensity'); 

  

figure; 

plot(lambda, pow2db(abs(crossSection))); 

title('Doppler Power Spectrum', 'FontWeight', 'bold'); 

xlabel('[\lambda] Frequency (Hz)'); 

ylabel('Normalized Intensity (dB)'); 

  

%% Compute scattering function. 

tauSamples = length(impulseResponse); 

lambdaSamples = numOfImpulseResponses; 

clear temp; 

scatteringFunction = zeros(tauSamples, 2 * lambdaSamples - 1); 

for i = 1:tauSamples 
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     temp = fftshift(fft(xcorr(impulseResponse(:,i)))); 

     scatteringFunction(i,:) = temp(end:-1:1); 

end 

  

maxVal = max(max(abs(scatteringFunction))); 

scatteringFunction = scatteringFunction / maxVal; 

scatteringFunction(scatteringFunction < 0.01) = 0; 

  

%% Plot scattering function. 

[tauSamples lambdaSamples] = size(scatteringFunction(1:end,:)); 

tau = (0:tauSamples-1) / samplingRate * 1000 - 1; 

lowerBound = floor(lambdaSamples / 2); 

upperBound = floor(lambdaSamples / 2); 

if (mod(lambdaSamples, 2) == 0) 

    upperBound = upperBound - 1; 

end 

f = -lowerBound:upperBound; 

lambda = (1 / referenceSeconds / 2) * f / lowerBound; 

  

figure; 

[X, Y] = meshgrid(tau, lambda); 

contour(X, Y, (abs(scatteringFunction(1:end,:)))'); 

title('Scattering Function', 'FontWeight', 'bold'), 

xlabel('[\tau] Delay (ms)'), 

ylabel('[\lambda] Frequency (Hz)'), 

zlabel('Normalized Intensity'), 

axis([-1 5 -2 2]); 

colorbar; 

  

%% Plot multipath intensity profile and compute delay spreads. 

mip = sum(abs(scatteringFunction')); 

mip = mip / max(mip); 

  

len = length(mip); 

tau = (0:len-1) * 1000/samplingRate - 1; 

figure; 

plot(tau, mip); 

xlim([-1 10]); 

title('Multipath Intensity Profile', 'FontWeight', 'bold'); 

xlabel('[\tau] Delay (ms)'); 

ylabel('Normalized Intensity'); 

  

maximumExcessDelay20 = find(mip >= 0.01); % 20 dB 

positiveMIP = mip(maximumExcessDelay20(1):maximumExcessDelay20(end)); 

positiveTau = tau(maximumExcessDelay20(1):maximumExcessDelay20(end)); 

sumValue = sum(positiveMIP); 

meanDelay = sum(positiveTau .* positiveMIP) / sumValue; 

rmsDelaySpread = sqrt( ... 

    sum((positiveTau - meanDelay).^2 .* positiveMIP) / sumValue); 

disp('Delay Spread'); 

s = sprintf('      Mean excess delay: %.4f ms', meanDelay); 

disp(s); 

s = sprintf('       RMS delay spread: %.4f ms', rmsDelaySpread); 

disp(s); 

  

maximumExcessDelay10 = find(mip >= 0.1); % 10 dB 

maximumExcessDelayMs = (maximumExcessDelay10(end) - ... 

                        maximumExcessDelay10(1)) / samplingRate * 1000; 

s = sprintf('   Maximum excess delay: %.4f ms', maximumExcessDelayMs); 

disp(s); 
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%% Plot spaced-frequency correlation function. 

sfcf = abs(fftshift(fft(mip))); 

sfcf = sfcf / max(sfcf); 

  

lenlambda = length(sfcf); 

lowerBound = floor(lenlambda / 2); 

upperBound = floor(lenlambda / 2); 

if (mod(lenlambda, 2) == 0) 

    upperBound = upperBound - 1; 

end 

f = -lowerBound:upperBound; 

freq = nyquistFreq / 2 * f / lowerBound / 1000; 

figure; 

plot(freq, sfcf); 

title('Spaced-Frequency Correlation Function', 'FontWeight', 'bold'); 

xlabel('\Delta f (kHz)'); 

ylabel('|{\itR_C}(\Delta f)|'); 

xlim([freq(1) freq(end)]); 

  

%% Convert spaced-frequency correlation function to dB and calculate the 

%  -3, -6 and -10 dB coherence bandwidths. 

sfcf = pow2db(sfcf); 

sfcf = sfcf - max(sfcf); 

  

figure; 

plot(freq, sfcf); 

title('Spaced-Frequency Correlation Function', 'FontWeight', 'bold'); 

xlabel('\Delta f (kHz)'); 

ylabel('|{\itR_C}(\Delta f)| (dB)'); 

xlim([freq(1) freq(end)]); 

  

midpoint = floor(length(sfcf)/2); 

resultLeft = find(sfcf(1:midpoint) < -3); 

resultRight = find(sfcf(midpoint+1:end) < -3); 

if (not(isempty(resultLeft)) && not(isempty(resultRight))) 

    minusLeft = (resultLeft(end)+1)/lenlambda * nyquistFreq; 

    minusRight = (resultRight(1)+midpoint-1)/lenlambda * nyquistFreq; 

    coherenceBandwidth3 = round(minusRight - minusLeft); 

else 

    coherenceBandwidth3 = nyquistFreq; 

end 

  

resultLeft = find(sfcf(1:midpoint) < -6); 

resultRight = find(sfcf(midpoint+1:end) < -6); 

if (not(isempty(resultLeft)) && not(isempty(resultRight))) 

    minusLeft = (resultLeft(end)+1)/lenlambda * nyquistFreq; 

    minusRight = (resultRight(1)+midpoint-1)/lenlambda * nyquistFreq; 

    coherenceBandwidth6 = round(minusRight - minusLeft); 

else 

    coherenceBandwidth6 = nyquistFreq; 

end 

  

resultLeft = find(sfcf(1:midpoint) < -10); 

resultRight = find(sfcf(midpoint+1:end) < -10); 

if (not(isempty(resultLeft)) && not(isempty(resultRight))) 

    minusLeft = (resultLeft(end)+1)/lenlambda * nyquistFreq; 

    minusRight = (resultRight(1)+midpoint-1)/lenlambda * nyquistFreq; 

    coherenceBandwidth10 = round(minusRight - minusLeft); 

else 
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    coherenceBandwidth10 = nyquistFreq; 

end 

  

disp('Coherence Bandwidth'); 

s = sprintf('   -3 dB: %d Hz', coherenceBandwidth3); 

disp(s); 

s = sprintf('   -6 dB: %d Hz', coherenceBandwidth6); 

disp(s); 

s = sprintf('  -10 dB: %d Hz', coherenceBandwidth10); 

disp(s); 

  

%% Compute Doppler shift and spread. 

dps = sum(abs(scatteringFunction)); 

  

numPoints = length(dps); 

lowerBound = floor(numPoints / 2); 

upperBound = lowerBound; 

if (mod(lambdaSamples, 2) == 0) 

    upperBound = upperBound - 1;  

end 

f = -lowerBound:upperBound; 

lambda = (1 / referenceSeconds / 2) * f / lowerBound; 

  

sumValue = sum(dps); 

overallShift = sum(lambda .* dps) / sumValue; 

overallSpread = sqrt(sum((lambda - overallShift).^2 .* dps) / sumValue); 

  

disp('Doppler Power Spectrum'); 

s = sprintf('    Doppler Shift: %.4f Hz', overallShift); 

disp(s); 

s = sprintf('   Doppler Spread: %.4f Hz', overallSpread); 

disp(s); 

  

%% Plot Doppler power spectrum. 

dps = dps / max(dps); 

  

figure; 

plot(lambda, dps); 

title('Doppler Power Spectrum', 'FontWeight', 'bold'); 

xlabel('[\lambda] Frequency (Hz)'); 

ylabel('Normalized Intensity'); 

  

%% Plot spaced-time correlation function and calculate coherence times for 

 % correlations of 0.5, 0.25, and 0.1. 

stcf = abs(fftshift(fft(dps))); 

stcf = stcf / max(stcf); 

  

lentime = length(stcf); 

lowerBound = floor(lentime / 2); 

upperBound = floor(lentime / 2); 

if (mod(lentime, 2) == 0) 

    upperBound = upperBound - 1; 

end 

t = -lowerBound:upperBound; 

time = recordedSeconds / 2 * t / lowerBound; 

  

midpoint = floor(length(stcf)/2); 

resultLeft = find(stcf(1:midpoint) < 0.5); 

resultRight = find(stcf(midpoint+1:end) < 0.5); 

if (not(isempty(resultLeft)) && not(isempty(resultRight))) 



174 
 

 
 

    minusLeft = (resultLeft(end)+1)/lentime * recordedSeconds; 

    minusRight = (resultRight(1)+midpoint-1)/lentime * recordedSeconds; 

    coherenceTime3 = minusRight - minusLeft; 

else 

    coherenceTime3 = recordedSeconds; 

end 

  

resultLeft = find(stcf(1:midpoint) < 0.25); 

resultRight = find(stcf(midpoint+1:end) < 0.25); 

if (not(isempty(resultLeft)) && not(isempty(resultRight))) 

    minusLeft = (resultLeft(end)+1)/lentime * recordedSeconds; 

    minusRight = (resultRight(1)+midpoint-1)/lentime * recordedSeconds; 

    coherenceTime6 = minusRight - minusLeft; 

else 

    coherenceTime6 = recordedSeconds; 

end 

  

resultLeft = find(stcf(1:midpoint) < 0.1); 

resultRight = find(stcf(midpoint+1:end) < 0.1); 

if (not(isempty(resultLeft)) && not(isempty(resultRight))) 

    minusLeft = (resultLeft(end)+1)/lentime * recordedSeconds; 

    minusRight = (resultRight(1)+midpoint-1)/lentime * recordedSeconds; 

    coherenceTime10 = minusRight - minusLeft; 

else 

    coherenceTime10 = recordedSeconds; 

end 

  

disp('Coherence Time'); 

s = sprintf('   -3 dB: %.3f sec', coherenceTime3); 

disp(s); 

s = sprintf('   -6 dB: %.3f sec', coherenceTime6); 

disp(s); 

s = sprintf('  -10 dB: %.3f sec', coherenceTime10); 

disp(s); 

  

figure; 

plot(time, stcf); 

title('Spaced-Time Correlation Function', 'FontWeight', 'bold'); 

xlabel('\Delta t (Seconds)'); 

ylabel('|{\itR_C}(\Delta t)|'); 

if (coherenceTime3 == recordedSeconds) 

    ylim([0 1.1]); 

else 

    ylim([0 1]); 

end 

  

%% Estimate Doppler shift and spread for strongest components. 

startIndex = maximumExcessDelay10(1); 

totalPaths = length(maximumExcessDelay10); 

scatteringFunction = abs(scatteringFunction(1:end,:)); 

index = zeros(1, totalPaths); 

delayMs = zeros(1, totalPaths); 

intensity = zeros(1, totalPaths); 

shift = zeros(1, totalPaths); 

spread = zeros(1, totalPaths); 

avgShift = 0; 

avgSpread = 0; 

  

% Compute statistics on the components falling within the maximum excess 

% delay (-10 dB of the strongest arrival). 
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for i = 1:totalPaths 

    rowIndex = maximumExcessDelay10(i); 

    intensity(i) = mip(rowIndex); 

    index(i) = rowIndex; 

    delayMs(i) = (rowIndex - oneMs - 1) / samplingRate * 1000; 

    Sband = scatteringFunction(rowIndex,:); 

    sumValue = sum(Sband); 

    if (sumValue == 0) 

        shift(i) = 0; 

        spread(i) = 0; 

    else 

        shift(i) = sum(lambda .* Sband) / sumValue; 

        spread(i) = sqrt(sum((lambda - shift(i)).^2 .* Sband) / sumValue); 

        avgShift = avgShift + shift(i); 

        avgSpread = avgSpread + spread(i); 

    end 

    scatteringFunction(rowIndex,:) = 0; 

end 

[s,c] = sort(index, 2, 'ascend'); 

set = [s', delayMs(c)' intensity(c)' shift(c)' spread(c)']; 

  

s = sprintf('\nStatistics for %d Strongest Components:', totalPaths); 

disp(s); 

s = sprintf('Index\tDelay(ms)\tIntensity\tShift\t\tSpread'); 

disp(s); 

for i = 1:totalPaths 

    s = sprintf('%d\t\t%.3f\t\t%.4f\t\t%.4f\t\t%.4f', ... 

                set(i, 1), set(i, 2), set(i, 3), set(i, 4), set(i, 5)); 

    disp(s); 

end 

s = sprintf('Average Doppler shift:  %.4f Hz', avgShift/totalPaths); 

disp(s); 

s = sprintf('Average Doppler spread: %.4f Hz', avgSpread/totalPaths); 

disp(s); 

 

A.5 Noise Power Spectral Density 
 

% Author: Brian Borowski 

% Created: 08/03/2009 

% Last modified: 02/02/2010 

% Computes and plots the PSD of noise in the Hudson River estuary. 

  

%% Start with a clean slate. 

clear all; 

close all; 

clc; 

  

%% Read in the data. 

[signal505, samplingRate505] = wavread('Noise505m.wav'); 

[signal200, samplingRate200] = wavread('Noise200m.wav'); 

  

%% Compute PSDs. 

h = spectrum.welch('Hann', 256); 

Hpsd505 = psd(h, signal505, 'NFFT', 256, 'Fs', samplingRate505); 

Hpsd200 = psd(h, signal200, 'NFFT', 256, 'Fs', samplingRate200); 

  

pow505 = pow2db(Hpsd505.Data); 

pow200 = pow2db(Hpsd200.Data); 
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%% Align to 0 dB level. 

if (mean(pow505) > mean(pow200)) 

    maxVal = max(pow505); 

else 

    maxVal = max(pow200); 

end 

  

pow505 = pow505 - maxVal; 

pow200 = pow200 - maxVal; 

  

%% Plot PSDs. 

plot(Hpsd505.Frequencies/1000, pow505, 'b'); 

hold on; 

plot(Hpsd200.Frequencies/1000, pow200, 'r--'); 

hold off; 

  

grid on; 

title('Welch Power Spectral Density Estimate', 'FontWeight', 'bold'); 

xlabel('Frequency (kHz)'); 

ylabel('Power/Frequency (dB/Hz)'); 

legend('5:24 P.M.', '6:42 P.M.'); 
 

A.6 Distribution Fitting of Magnitude Levels in Multipath Arrival 
 

% Author: Brian Borowski 

% Created: 02/07/2010 

% Last modified: 02/18/2010 

% Fits magnitude levels to various distributions used to model fading 

% channels. 

  

%% Start with a clean slate. 

clc; 

clear all; 

close all; 

  

%% Read in and prepare the data. 

magnitudes = csvread('StrongestComponent1.csv'); 

sortedMagnitudes = sort(magnitudes); 

  

% Beta distribution cannot accept values of 1. Normalize max to 0.99 first. 

sortedMagnitudes = sortedMagnitudes / sortedMagnitudes(end) * 0.99; 

  

% Plot the fading envelope. 

figure; 

seconds = 1:length(magnitudes); 

seconds = seconds / 20; 

env = mag2db(magnitudes); 

env = env - mean(env); 

plot(seconds, env); 

xlabel('Time (s)'); 

ylabel('Amplitude (dB)'); 

title('Fading Envelope of Strongest Impulse Response Tap', ... 

      'FontWeight', 'bold'); 

axis([0 30 -80 20]); 

  

%% Plot the histogram of the measurements. 

figure; 
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start = (sortedMagnitudes(1)); 

finish = (sortedMagnitudes(end)); 

x = linspace(start, finish, 100); 

hist(sortedMagnitudes, x); 

xlabel('Signal Level'); 

ylabel('Frequency'); 

h = get(gca, 'child'); 

set(h, 'FaceColor', [.98 .98 .98], 'EdgeColor', [.94 .94 .94]); 

counts = hist(sortedMagnitudes, x); 

hold on; 

plot(x, counts, 'o'); 

hold off; 

     

n = length(sortedMagnitudes); 

binWidth = x(2) - x(1); 

prob = counts / (n * binWidth); 

prob = prob / sum(prob); 

legh_ = zeros(1, 7); legt_ = cell(1, 7);   % Handles and text for legend 

ax_ = newplot; 

set(ax_, 'Box', 'on');     

bar(x, prob, 'hist'); 

h_ = get(gca, 'child'); 

set(h_, 'FaceColor', [.4 .4 .4], 'EdgeColor', [.4 .4 .4]); 

xlabel('Signal Level'); 

ylabel('Distribution'); 

title('Probability Distribution Function, Strongest IR Tap', ... 

      'FontWeight', 'bold'); 

legh_(1) = h_; 

legt_{1} = 'Measurements'; 

leginfo_ = {'Orientation', 'vertical', 'Location', 'NorthEast'}; 

  

% Use maximum likelihood estimation to fit the data. 

alpha = 0.05; % alpha = 0.05 for 95% confidence. 

paramEstsRayleigh = raylfit(sortedMagnitudes, alpha); 

rayleighEst = raylpdf(x, paramEstsRayleigh(1)); 

  

paramEstsRician = mle(sortedMagnitudes, 'dist', 'rician', 'alpha', alpha); 

ricianEst = pdf('rician', x, paramEstsRician(1), paramEstsRician(2)); 

K = paramEstsRician(1)^2 / (2 * paramEstsRician(2)^2); 

  

paramEstsNakagami = mle(sortedMagnitudes, 'dist', 'nakagami', ... 

    'alpha', alpha); 

nakagamiEst = ... 

    pdf('nakagami', x, paramEstsNakagami(1), paramEstsNakagami(2)); 

  

paramEstsBeta = betafit(sortedMagnitudes, alpha); 

betaEst = betapdf(x, paramEstsBeta(1), paramEstsBeta(2)); 

  

paramEstsGamma = gamfit(sortedMagnitudes, alpha); 

gammaEst = gampdf(x, paramEstsGamma(1), paramEstsGamma(2)); 

  

paramEstsLog = lognfit(sortedMagnitudes, alpha); 

logEst = lognpdf(x, paramEstsLog(1), paramEstsLog(2)); 

  

rayleighEst = rayleighEst / sum(rayleighEst); 

ricianEst = ricianEst / sum(ricianEst); 

nakagamiEst = nakagamiEst / sum(nakagamiEst); 

betaEst = betaEst / sum(betaEst); 

gammaEst = gammaEst / sum(gammaEst); 

logEst = logEst / sum(logEst); 
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rayleighEst = rayleighEst / sum(rayleighEst); 

ricianEst = ricianEst / sum(ricianEst); 

nakagamiEst = nakagamiEst / sum(nakagamiEst); 

betaEst = betaEst / sum(betaEst); 

gammaEst = gammaEst / sum(gammaEst); 

logEst = logEst / sum(logEst); 

  

%% Plot the fits. 

hold on; 

h_ = plot(x, rayleighEst, 'Color', 'red', ... 

      'LineStyle', '-', 'LineWidth', 2, ... 

      'Marker', 'none', 'MarkerSize', 6); 

legh_(2) = h_; 

legt_{2} = 'Rayleigh fit'; 

  

h_ = plot(x, ricianEst, 'Color', 'blue', ... 

      'LineStyle', '-', 'LineWidth', 2, ... 

      'Marker', 'none', 'MarkerSize', 6); 

legh_(3) = h_; 

legt_{3} = 'Rician fit'; 

  

h_ = plot(x, nakagamiEst, 'Color', 'green', ... 

      'LineStyle', '-', 'LineWidth', 2, ... 

      'Marker', 'none', 'MarkerSize', 6); 

legh_(4) = h_; 

legt_{4} = 'Nakagami fit'; 

  

h_ = plot(x, betaEst, 'Color', [1 0.64 0], ... 

      'LineStyle', '-', 'LineWidth', 2, ... 

      'Marker', 'none', 'MarkerSize', 6); 

legh_(5) = h_; 

legt_{5} = 'Beta fit'; 

  

h_ = plot(x, gammaEst, 'Color', 'magenta', ... 

      'LineStyle', '-', 'LineWidth', 2, ... 

      'Marker', 'none', 'MarkerSize', 6); 

legh_(6) = h_; 

legt_{6} = 'Gamma fit'; 

  

h_ = plot(x, logEst, 'Color', 'cyan', ... 

      'LineStyle', '-', 'LineWidth', 2, ... 

      'Marker', 'none', 'MarkerSize', 6); 

legh_(7) = h_; 

legt_{7} = 'Lognormal fit'; 

  

h_ = legend(ax_, legh_, legt_, leginfo_{:}); 

set(h_, 'Interpreter', 'none'); 

hold off; 

  

logTwoData = log2(prob); 

for i = 1:length(logTwoData) 

    if (isinf(log2(logTwoData(i)))) 

        logTwoData(i) = 0; 

    end 

end 

  

%% Test the goodness of the fits with: 

%  - Kullback-Leibler divergence 

%  - Bhattacharyya distance 
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%  - Metric based on the Bhattacharyya coefficient, proposed by Comaniciu, 

%    Ramesh, and Meer 

KLray = sum(prob .* (logTwoData - log2(rayleighEst))); 

KLric = sum(prob .* (logTwoData - log2(ricianEst))); 

KLnak = sum(prob .* (logTwoData - log2(nakagamiEst))); 

KLbet = sum(prob .* (logTwoData - log2(betaEst))); 

KLgam = sum(prob .* (logTwoData - log2(gammaEst))); 

KLlog = sum(prob .* (logTwoData - log2(logEst))); 

  

Bray = -log2(sum(sqrt(prob .* rayleighEst))); 

Bric = -log2(sum(sqrt(prob .* ricianEst))); 

Bnak = -log2(sum(sqrt(prob .* nakagamiEst))); 

Bbet = -log2(sum(sqrt(prob .* betaEst))); 

Bgam = -log2(sum(sqrt(prob .* gammaEst))); 

Blog = -log2(sum(sqrt(prob .* logEst))); 

  

BModray = sqrt(1 - (sum(sqrt(prob .* rayleighEst)))); 

BModric = sqrt(1 - (sum(sqrt(prob .* ricianEst)))); 

BModnak = sqrt(1 - (sum(sqrt(prob .* nakagamiEst)))); 

BModbet = sqrt(1 - (sum(sqrt(prob .* betaEst)))); 

BModgam = sqrt(1 - (sum(sqrt(prob .* gammaEst)))); 

BModlog = sqrt(1 - (sum(sqrt(prob .* logEst)))); 

  

%% Display the results in a table. 

disp('----- Strongest Impulse Response Tap -----'); 

disp('            K-L     Bhat.   CRM'); 

s = sprintf('Beta      : %.4f  %.4f  %.4f [alpha = %.4f, beta = %.4f]', ... 

    KLbet, Bbet, BModbet, paramEstsBeta(1), paramEstsBeta(2)); 

disp(s); 

s = sprintf('Gamma     : %.4f  %.4f  %.4f [alpha = %.4f, beta = %.4f]', ... 

    KLgam, Bgam, BModgam, paramEstsGamma(1), paramEstsGamma(2)); 

disp(s); 

s = sprintf('Lognormal : %.4f  %.4f  %.4f [mu = %.4f, sigma = %.4f]', ... 

    KLlog, Blog, BModlog, paramEstsLog(1), paramEstsLog(2)); 

disp(s); 

s = sprintf('Nakagami-m: %.4f  %.4f  %.4f [m = %.4f, omega = %.4f]', ... 

    KLnak, Bnak, BModnak, paramEstsNakagami(1), paramEstsNakagami(2)); 

disp(s); 

s = sprintf('Rayleigh  : %.4f  %.4f  %.4f [sigma = %.4f]', KLray, Bray, ... 

    BModray, paramEstsRayleigh(1)); 

disp(s); 

s = sprintf(... 

    'Rician    : %.4f  %.4f  %.4f [s = %.4f, sigma = %.4f, K = %.4f]', ... 

    KLric, Bric, BModric, paramEstsRician(1), paramEstsRician(2), K); 

disp(s); 

 

A.7 Distribution Fitting of Magnitude Levels in Comb Signal 
 

% Author: Brian Borowski 

% Created: 07/12/2009 

% Last modified: 02/18/2010 

% Fits magnitude levels of comb signal to various distributions used to 

% model fading channels. 

  

%% Start with a clean slate. 

clc; 

clear all; 

close all; 
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%% Initialization. 

delta = 1.0;              % Specified in kHz 

tones = [35 45 60 75 85]; % Specified in kHz 

secondsToProcess = 10; 

  

[data, samplingRate, numBits] = wavread('MultipleTones.wav'); 

data = data(1:secondsToProcess*samplingRate); 

dbEnvelope = zeros(length(tones), length(data)); 

  

%% Process each tone separately. 

for i = 1:length(tones) 

    tone = tones(i); 

     

    n = 10; 

    Wn = [(tone-delta)*1000 (tone+delta)*1000] / (samplingRate / 2); 

    ftype = 'bandpass'; 

  

    % To avoid round-off errors, do not use the transfer function. Instead 

    % get the zpk representation and convert it to second-order sections. 

  

    % Zero-Pole-Gain design 

    [z, p, k] = butter(n, Wn, ftype); 

    [sos, g] = zp2sos(z, p, k); 

    Hd = dfilt.df2sos(sos, g); 

    filteredData = filter(Hd, data); 

  

    filename = sprintf('%dkHz.wav', tone); 

    filteredData = filteredData / max(filteredData) * 0.99; 

    wavwrite(filteredData, samplingRate, filename); 

    X = hilbert(filteredData); 

    Xr = real(X); 

    Xi = imag(X); 

    magnitudes = sqrt(Xr.^2 + Xi.^2); 

    sortedMagnitudes = sort(magnitudes); 

     

    % Beta distribution cannot accept values >= 1. Normalize max to 

    % 0.99 first. 

    maxVal = sortedMagnitudes(end); 

    sortedMagnitudes = sortedMagnitudes / maxVal * 0.99; 

  

    minVal = sortedMagnitudes(1); 

    % Beta distribution cannot accept values <= 0. All values are already 

    % non-negative. Duplicate first non-negative value in place of 0. 

    if (minVal == 0) 

        sortedMagnitudes(1) = sortedMagnitudes(2); 

    end 

  

    dbEnvelope(i,:) = mag2db(sortedMagnitudes); 

     

    figure; 

    seconds = 1:length(magnitudes); 

    seconds = seconds / samplingRate; 

    env = mag2db(magnitudes); 

    env = env - mean(env); 

    plot(seconds, env); 

    xlabel('Time (s)'); 

    ylabel('Amplitude (dB)'); 

    graphTitle = sprintf('Fading Envelope of %d kHz Sinusoid', tone); 

    title(graphTitle, 'FontWeight', 'bold'); 
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    ylim([-80 20]); 

  

    meanVal = mean(dbEnvelope(i,:)); 

    if (meanVal < 0) 

        meanVal = meanVal * -1; 

    end 

    dbEnvelope(i,:) = dbEnvelope(i,:) + meanVal; 

  

    % Plot the histogram of the measurements. 

    figure; 

    start = (sortedMagnitudes(1)); 

    finish = (sortedMagnitudes(end)); 

    x = linspace(start, finish, 100); 

    hist(sortedMagnitudes, x); 

    xlabel('Signal Level'); 

    ylabel('Frequency'); 

    h = get(gca,'child'); 

    set(h, 'FaceColor', [.98 .98 .98], 'EdgeColor', [.94 .94 .94]); 

    counts = hist(sortedMagnitudes, x); 

    hold on; 

    plot(x, counts, 'o'); 

    hold off; 

  

    n = length(sortedMagnitudes); 

    binWidth = x(2) - x(1); 

    prob = counts / (n * binWidth); 

    prob = prob / sum(prob); 

    legh_ = zeros(1, 7); legt_ = cell(1, 7);   % Handles and text for legend 

    ax_ = newplot; 

    set(ax_, 'Box', 'on');     

    bar(x, prob, 'hist'); 

    h_ = get(gca, 'child'); 

    set(h_, 'FaceColor', [.4 .4 .4], 'EdgeColor',[.4 .4 .4]); 

    xlabel('Signal Level'); 

    ylabel('Distribution'); 

    s = sprintf('Probability Distribution Function, %d kHz', tone); 

    title(s, 'FontWeight', 'bold'); 

    legh_(1) = h_; 

    legt_{1} = 'Measurements'; 

    leginfo_ = {'Orientation', 'vertical', 'Location', 'NorthEast'}; 

  

    % Use maximum likelihood estimation to fit the data. 

    alpha = 0.05; % alpha = 0.05 for 95% confidence. 

    paramEstsRayleigh = raylfit(sortedMagnitudes, alpha); 

    rayleighEst = raylpdf(x, paramEstsRayleigh(1)); 

  

    paramEstsRician = mle(sortedMagnitudes, 'dist', 'rician', 'alpha', alpha); 

    ricianEst = pdf('rician', x, paramEstsRician(1), paramEstsRician(2)); 

    K = paramEstsRician(1)^2 / (2 * paramEstsRician(2)^2); 

  

    paramEstsNakagami = mle(sortedMagnitudes, 'dist', 'nakagami', ... 

        'alpha', alpha); 

    nakagamiEst = ... 

        pdf('nakagami', x, paramEstsNakagami(1), paramEstsNakagami(2)); 

  

    paramEstsBeta = betafit(sortedMagnitudes, alpha); 

    betaEst = betapdf(x, paramEstsBeta(1), paramEstsBeta(2)); 

  

    paramEstsGamma = gamfit(sortedMagnitudes, alpha); 

    gammaEst = gampdf(x, paramEstsGamma(1), paramEstsGamma(2)); 
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    paramEstsLog = lognfit(sortedMagnitudes, alpha); 

    logEst = lognpdf(x, paramEstsLog(1), paramEstsLog(2)); 

  

    rayleighEst = rayleighEst / sum(rayleighEst); 

    ricianEst = ricianEst / sum(ricianEst); 

    nakagamiEst = nakagamiEst / sum(nakagamiEst); 

    betaEst = betaEst / sum(betaEst); 

    gammaEst = gammaEst / sum(gammaEst); 

    logEst = logEst / sum(logEst); 

  

    % Plot the fits. 

    hold on; 

    h_ = plot(x, rayleighEst, 'Color', 'red', ... 

          'LineStyle', '-', 'LineWidth', 2, ... 

          'Marker', 'none', 'MarkerSize', 6); 

    legh_(2) = h_; 

    legt_{2} = 'Rayleigh fit'; 

  

    h_ = plot(x, ricianEst, 'Color', 'blue', ... 

          'LineStyle', '-', 'LineWidth', 2, ... 

          'Marker', 'none', 'MarkerSize', 6); 

    legh_(3) = h_; 

    legt_{3} = 'Rician fit'; 

  

    h_ = plot(x, nakagamiEst, 'Color', 'green', ... 

          'LineStyle', '-', 'LineWidth', 2, ... 

          'Marker', 'none', 'MarkerSize', 6); 

    legh_(4) = h_; 

    legt_{4} = 'Nakagami fit'; 

  

    h_ = plot(x, betaEst, 'Color', [1 0.64 0], ... 

          'LineStyle', '-', 'LineWidth', 2, ... 

          'Marker', 'none', 'MarkerSize', 6); 

    legh_(5) = h_; 

    legt_{5} = 'Beta fit'; 

  

    h_ = plot(x, gammaEst, 'Color', 'magenta', ... 

          'LineStyle', '-', 'LineWidth', 2, ... 

          'Marker', 'none', 'MarkerSize', 6); 

    legh_(6) = h_; 

    legt_{6} = 'Gamma fit'; 

  

    h_ = plot(x, logEst, 'Color', 'cyan', ... 

          'LineStyle', '-', 'LineWidth', 2, ... 

          'Marker', 'none', 'MarkerSize', 6); 

    legh_(7) = h_; 

    legt_{7} = 'Lognormal fit'; 

  

    h_ = legend(ax_, legh_, legt_, leginfo_{:}); 

    set(h_, 'Interpreter', 'none'); 

    hold off; 

    xlim([-0.005 1]); 

  

    % Test the goodness of the fits with: 

    %  - Kullback-Leibler divergence 

    %  - Bhattacharyya distance 

    %  - Metric based on the Bhattacharyya coefficient, proposed by Comaniciu, 

    %    Ramesh, and Meer 

    logTwoData = log2(prob); 
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    for j = 1:length(logTwoData) 

        if (isinf(log2(logTwoData(j)))) 

            logTwoData(j) = 0; 

        end 

    end 

  

    KLray = sum(prob .* (logTwoData - log2(rayleighEst))); 

    KLric = sum(prob .* (logTwoData - log2(ricianEst))); 

    KLnak = sum(prob .* (logTwoData - log2(nakagamiEst))); 

    KLbet = sum(prob .* (logTwoData - log2(betaEst))); 

    KLgam = sum(prob .* (logTwoData - log2(gammaEst))); 

    KLlog = sum(prob .* (logTwoData - log2(logEst))); 

     

    Bray = -log2(sum(sqrt(prob .* rayleighEst))); 

    Bric = -log2(sum(sqrt(prob .* ricianEst))); 

    Bnak = -log2(sum(sqrt(prob .* nakagamiEst))); 

    Bbet = -log2(sum(sqrt(prob .* betaEst))); 

    Bgam = -log2(sum(sqrt(prob .* gammaEst))); 

    Blog = -log2(sum(sqrt(prob .* logEst))); 

  

    BModray = sqrt(1 - (sum(sqrt(prob .* rayleighEst)))); 

    BModric = sqrt(1 - (sum(sqrt(prob .* ricianEst)))); 

    BModnak = sqrt(1 - (sum(sqrt(prob .* nakagamiEst)))); 

    BModbet = sqrt(1 - (sum(sqrt(prob .* betaEst)))); 

    BModgam = sqrt(1 - (sum(sqrt(prob .* gammaEst)))); 

    BModlog = sqrt(1 - (sum(sqrt(prob .* logEst)))); 

     

    % Display the results in a table. 

    s = sprintf('----- %d kHz Sinusoid -----', tone); 

    disp(s); 

    disp('            K-L     Bhat.   CRM'); 

    s = sprintf('Beta      : %.4f  %.4f  %.4f [alpha = %.4f, beta = %.4f]', ... 

        KLbet, Bbet, BModbet, paramEstsBeta(1), paramEstsBeta(2)); 

    disp(s); 

    s = sprintf('Gamma     : %.4f  %.4f  %.4f [alpha = %.4f, beta = %.4f]', ... 

        KLgam, Bgam, BModgam, paramEstsGamma(1), paramEstsGamma(2)); 

    disp(s); 

    s = sprintf('Lognormal : %.4f  %.4f  %.4f [mu = %.4f, sigma = %.4f]', ... 

        KLlog, Blog, BModlog, paramEstsLog(1), paramEstsLog(2)); 

    disp(s); 

    s = sprintf('Nakagami-m: %.4f  %.4f  %.4f [m = %.4f, omega = %.4f]', ... 

        KLnak, Bnak, BModnak, paramEstsNakagami(1), paramEstsNakagami(2)); 

    disp(s); 

    s = sprintf('Rayleigh  : %.4f  %.4f  %.4f [sigma = %.4f]', KLray, Bray, ... 

        BModray, paramEstsRayleigh(1)); 

    disp(s); 

    s = sprintf(... 

        'Rician    : %.4f  %.4f  %.4f [s = %.4f, sigma = %.4f, K = %.4f]', ... 

        KLric, Bric, BModric, paramEstsRician(1), paramEstsRician(2), K); 

    disp(s); 

end 

  

u = unique(dbEnvelope(1,:)); 

assert(length(u) == length(dbEnvelope(1,:)), ... 

       'Duplicates found in envelope 1.'); 

  

u = unique(dbEnvelope(2,:)); 

assert(length(u) == length(dbEnvelope(2,:)), ... 

       'Duplicates found in envelope 2.'); 
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u = unique(dbEnvelope(3,:)); 

assert(length(u) == length(dbEnvelope(3,:)), ... 

       'Duplicates found in envelope 3.'); 

  

u = unique(dbEnvelope(4,:)); 

assert(length(u) == length(dbEnvelope(4,:)), ... 

       'Duplicates found in envelope 4.'); 

  

u = unique(dbEnvelope(5,:)); 

assert(length(u) == length(dbEnvelope(5,:)), ... 

       'Duplicates found in envelope 5.'); 

  

zeroIndex1 = find(dbEnvelope(1,:) >= 0); 

prob1 = 1:zeroIndex1 - 1; 

prob1 = prob1 / length(magnitudes); 

zeroIndex2 = find(dbEnvelope(2,:) >= 0); 

prob2 = 1:zeroIndex2 - 1; 

prob2 = prob2 / length(magnitudes); 

zeroIndex3 = find(dbEnvelope(3,:) >= 0); 

prob3 = 1:zeroIndex3 - 1; 

prob3 = prob3 / length(magnitudes); 

zeroIndex4 = find(dbEnvelope(4,:) >= 0); 

prob4 = 1:zeroIndex4 - 1; 

prob4 = prob4 / length(magnitudes); 

zeroIndex5 = find(dbEnvelope(5,:) >= 0); 

prob5 = 1:zeroIndex5 - 1; 

prob5 = prob5 / length(magnitudes); 

  

figure; 

semilogy(dbEnvelope(1, 1:zeroIndex1 - 1), prob1, ... 

         dbEnvelope(2, 1:zeroIndex2 - 1), prob2, ... 

         dbEnvelope(3, 1:zeroIndex3 - 1), prob3, ... 

         dbEnvelope(4, 1:zeroIndex4 - 1), prob4, ... 

         dbEnvelope(5, 1:zeroIndex5 - 1), prob5); 

grid minor; 

grid; 

grid minor; 

title('Cumulative Distribution of Sinusoids', 'FontWeight', 'bold'); 

ylabel('Probability Signal Level < Abscissa'); 

xlabel('Signal Level Relative to Average (dB)'); 

legend('35 kHz', '45 kHz', '60 kHz', '75 kHz', '85 kHz', ... 

       'Location', 'NorthWest'); 

minValues = [dbEnvelope(1, 1) dbEnvelope(2, 1) dbEnvelope(3, 1) ... 

             dbEnvelope(4, 1) dbEnvelope(5, 1)]; 

minX = min(minValues); 

minX = int32(ceil(-minX / 10)) * -10; 

xlim([minX 0]); 
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Appendix B  

Source Code for Chapter 3 

B.1 FFT Convolution 
 
function [y] = fconv(x, h, normalize) 

%FCONV Fast Convolution 

%   y = FCONV(x, h) convolves x and h, where 

%       x is the time domain signal and 

%       h is the filter kernel. 

% 

%   y = FCONV(x, h, normalize) convolves x and h and normalizes the 

%       result to -1..1 if normalize is 'true'. 

  

    if (nargin < 2) 

        error('Too few arguments specified in function.'); 

    end 

  

    if (nargin > 3) 

        error('Too many arguments specified in function.'); 

    end 

  

    if (nargin == 2) 

        normalize = 'false'; 

    end 

  

    lenY = length(x) + length(h) - 1; 

    lenYPow2 = pow2(nextpow2(lenY)); % Find smallest power of 2 > lenY 

    X = fft(x, lenYPow2);            % FFT 

    H = fft(h, lenYPow2);            % FFT 

    Y = X .* H;                      % Multiplication in frequency domain 

    y = real(ifft(Y, lenYPow2));     % Inverse FFT 

    y = y(1:lenY);                   % Use first lenY elements 

    if (strcmp(normalize, 'true') == 1) 

        y = y / max(abs(y));         % Normalize output 

    end 

 

B.2 Hard Limiter 
 

function [y] = hardlimit(x) 

%HARDLIMIT limits the amplitude of a signal. 

%   As indicated in, 

%   J. Jones, "Hard-Limiting of Two Signals in Random Noise," 

%   IEEE Trans. on Information Theory, Vol. 9, Iss. 1, pp. 34–42, Jan. 1963, 

%   the ideal limiter is described by its amplitude characteristic g(x), 

%   with which the limiter output y(t) can be expressed uniquely in terms 

%   of the input as 

%   y(t) = g[x(t)] = {+1, 0, -1} if x(t) {> 0, = 0, < 0}. 

  

    y = 2 * ((x > 0) - 0.5); 
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B.3 Second-Order IIR Bandpass Filter 
 
function [y] = filterSignal(x, samplingRate, freq, symbolsPerSecond) 

%FILTERSIGNAL implements a second-order IIR bandpass filter. 

%   y = FILTERSIGNAL(x, samplingRate, freq, symbolsPerSecond) 

%       produces a bandpass-filtered signal of the input signal x with a 

%       -3 dB bandwidth of symbolsPerSecond Hz centered on freq Hz. 

%       The samplingRate of x must be provided as an input argument. 

  

    f = freq / samplingRate; 

    bw = symbolsPerSecond / samplingRate; 

    R = 1 - 3 * bw; 

    K = (1 - 2 * R * cos(2 * pi * f) + R * R) / (2 - 2 * cos(2 * pi * f)); 

    a0 = 1 - K; 

    a1 = 2 * (K - R) * cos(2 * pi * f); 

    a2 = R * R - K; 

    b1 = 2 * R * cos(2 * pi * f); 

    b2 = -R * R; 

  

    numSamples = length(x); 

    y = zeros(1, numSamples); 

    y(1) = 0; 

    y(2) = 0; 

    for i = 3:numSamples 

        y(i) = a0 * x(i) + a1 * x(i - 1) + a2 * x(i - 2) + ... 

               b1 * y(i - 1) + b2 * y(i - 2); 

    end 

 

B.4 Generation of Chirp Signals and FSK and PSK Waveforms 
 

% Author: Brian Borowski 

% Date created: 09/15/2009 

% Date last modified: 03/27/2010 

% Generates the signals used to test a channel. The signals include 

% sequential 50ms LFM chirps and FSK and PSK waveforms. 

  

%% Start with a clean slate. 

clear all; 

close all; 

clc; 

  

%% Key parameters 

generateData = 0; 

chirpSeconds = 5;    % 1 long chirp to precede packet stream 

chirpMs = 50;        % Used in channel characterization 

samplingRate = 48000; 

symbolsPerSecond = 3500; 

carrierFreq = 17500; 

numberOfPackets = 50; 

  

%% Generate sounding signal. 

chirpSignal = chirp(0, samplingRate/2, samplingRate, chirpMs/1000); 

Xr = real(chirpSignal); 

Xr = Xr * 0.98; 

soundingSignal = zeros(1, samplingRate * 60); 

  

lenChirp = length(chirpSignal); 
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lenSounding = length(soundingSignal); 

numChirps = lenSounding / lenChirp; 

offset = 0; 

for i = 1:numChirps 

    soundingSignal(1+offset:lenChirp+offset) = Xr; 

    offset = offset + lenChirp; 

end 

wavwrite(soundingSignal, samplingRate, 'Reference/SoundingSignal.wav'); 

  

%% Only use this section once to generate the packet data. 

if (generateData) 

    packetSizeBytes = 256; 

    packetSizeBits = packetSizeBytes * 8; 

    data = randi([0 1], packetSizeBits, 1); 

    dlmwrite('PacketBits.txt', data, 'delimiter', ' ', 'newline','pc'); 

end 

  

%% Parameters common to both FSK and PSK modulation 

data = dlmread('Reference/PacketBits.txt', ' '); 

samplesPerBit = floor(samplingRate / symbolsPerSecond); 

  

if (mod(carrierFreq, symbolsPerSecond)) 

    error('Carrier frequency must be a multiple of symbol rate.'); 

end 

fc = [(carrierFreq - symbolsPerSecond / 2) ... 

      (carrierFreq + symbolsPerSecond / 2)]; 

  

if (symbolsPerSecond < 500) 

    chirpRange = [(carrierFreq - 500) (carrierFreq + 500)]; 

else 

    chirpRange = [(carrierFreq - symbolsPerSecond) ... 

                  (carrierFreq + symbolsPerSecond)]; 

end 

packetChirp = chirp(chirpRange(1), chirpRange(2), samplingRate, 0.05); 

packetChirpReal = real(packetChirp); 

  

guardTime = zeros(1, 0.01*samplingRate); 

numberOfBits = length(data); 

interPacketSilence = zeros(1, samplingRate); 

  

streamChirp = chirp(0, 24000, samplingRate, chirpSeconds); 

streamReal = real(streamChirp); 

streamReal = streamReal * 0.98; 

filename = sprintf('Reference/ChirpRef_%ds.wav', chirpSeconds); 

wavwrite(streamReal, samplingRate, filename); 

  

%% Generate FSK waveform. 

txFSK = zeros(1, samplesPerBit * numberOfBits); 

t = 0.0; 

for i = 1:numberOfBits 

    for j = 1:samplesPerBit 

        t = t + 2 * pi * fc(data(i)+1) / samplingRate; 

        if (t > pi) 

            t = t - 2 * pi; 

        end 

        txFSK(j + samplesPerBit*(i-1)) = cos(t); 

    end 

end 

packetFSK = [packetChirpReal guardTime txFSK interPacketSilence]; 

packetFSK = packetFSK * 0.98; 
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%% Generate stream of FSK packets. 

%  Start with one long LFM chirp to accurately estimate the LTI channel. 

lenPacketFSK = length(packetFSK); 

lenStreamChirp = length(streamChirp); 

offset = lenStreamChirp + length(interPacketSilence); 

packetFSKStream = zeros(1, numberOfPackets*lenPacketFSK + offset); 

packetFSKStream(1:lenStreamChirp) = streamReal; 

for i = 1:numberOfPackets 

    packetFSKStream(1+offset:lenPacketFSK+offset) = packetFSK; 

    offset = offset + lenPacketFSK; 

end 

filename = sprintf('Reference/FSKStream_%dHz_%dbps.wav', ... 

                   carrierFreq, symbolsPerSecond); 

wavwrite(packetFSKStream, samplingRate, filename); 

  

%% Generate PSK waveform. 

txPSK = zeros(1, samplesPerBit * numberOfBits); 

t = 0.0; 

for i = 1:numberOfBits 

    offset = samplesPerBit * (i-1); 

    for j = 1:samplesPerBit 

        t = t + 2 * pi * carrierFreq / samplingRate; 

        if (t > pi) 

            t = t - 2 * pi; 

        end 

        if (data(i) == 0) 

            txPSK(j + offset) = -cos(t); 

        else 

            txPSK(j + offset) = cos(t); 

        end 

    end 

    t = 0.0; 

end 

packetPSK = [packetChirpReal guardTime txPSK interPacketSilence]; 

packetPSK = packetPSK * 0.98; 

  

%% Generate stream of PSK packets. 

%  Start with one long LFM chirp to accurately estimate the LTI channel. 

lenPacketPSK = length(packetPSK); 

lenStreamChirp = length(streamChirp); 

offset = lenStreamChirp + length(interPacketSilence); 

packetPSKStream = zeros(1, numberOfPackets*lenPacketPSK + offset); 

packetPSKStream(1:lenStreamChirp) = streamReal; 

for i = 1:numberOfPackets 

    packetPSKStream(1+offset:lenPacketPSK+offset) = packetPSK; 

    offset = offset + lenPacketPSK; 

end 

filename = sprintf('Reference/PSKStream_%dHz_%dbps.wav', ... 

                   carrierFreq, symbolsPerSecond); 

wavwrite(packetPSKStream, samplingRate, filename); 

 

B.5 Verification of Channel Simulation 
 

% Author: Brian Borowski 

% Date created: 09/15/2009 

% Date last modified: 03/27/2010 

% Computes the BERs of real packets transmitted through the Rubbermaid tub 
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% and compares the values to that obtained when convolving the packet 

% waveform with the tub's estimated impulse response. 

  

%% Start with a clean slate. 

clear all; 

close all; 

clc; 

  

%% Initialize basic parameters. 

samplingRate = 48000; 

symbolsPerSecond = 2500; 

carrierFreq = 7500; 

numberOfPackets = 50; 

useLimiter = 0; 

  

%% Generate reference chirp signal. 

chirpSeconds = 5; 

streamChirp = chirp(0, samplingRate/2, samplingRate, chirpSeconds); 

  

%% Initialize variables used in generating packets. 

data = dlmread('Reference/PacketBits.txt', ' '); 

ir_FSK_file = 'Tub/IR_FSK.wav'; 

ir_PSK_file = 'Tub/IR_PSK.wav'; 

numberOfBits = length(data); 

samplesPerBit = floor(samplingRate / symbolsPerSecond); 

if (mod(carrierFreq, symbolsPerSecond)) 

    error('Carrier frequency must be a multiple of symbol rate.'); 

end 

fc = [(carrierFreq - symbolsPerSecond / 2) ... 

      (carrierFreq + symbolsPerSecond / 2)]; 

  

if (symbolsPerSecond < 500) 

    chirpRange = [(carrierFreq - 500) (carrierFreq + 500)]; 

else 

    chirpRange = [(carrierFreq - symbolsPerSecond) ... 

                  (carrierFreq + symbolsPerSecond)]; 

end 

packetChirp = chirp(chirpRange(1), chirpRange(2), samplingRate, 0.05); 

guardTime = zeros(1, 0.01 * samplingRate); 

samplesPerPacket = length(packetChirp) + length(guardTime) + ... 

                   samplesPerBit * numberOfBits; 

  

%% CPFSK modulation 

txFSK = zeros(1, samplesPerBit * numberOfBits); 

t = 0.0; 

for i = 1:numberOfBits 

    for j = 1:samplesPerBit 

        t = t + 2 * pi * fc(data(i)+1) / samplingRate; 

        if (t > pi) 

            t = t - 2 * pi; 

        end 

        txFSK(j + samplesPerBit*(i-1)) = cos(t); 

    end 

end 

  

%% PSK modulation 

txPSK = zeros(1, samplesPerBit * numberOfBits); 

t = 0.0; 

for i = 1:numberOfBits 

    offset = samplesPerBit * (i-1); 
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    for j = 1:samplesPerBit 

        t = t + 2 * pi * carrierFreq / samplingRate; 

        if (t > pi) 

            t = t - 2 * pi; 

        end 

        if (data(i) == 0) 

            txPSK(j + offset) = -cos(t); 

        else 

            txPSK(j + offset) = cos(t); 

        end 

    end 

    t = 0.0; 

end 

  

%% Assemble packets. 

txFSK = [guardTime packetChirp guardTime txFSK]; 

txPSK = [guardTime packetChirp guardTime txPSK]; 

  

%% Read raw data samples. 

filename = sprintf('Recordings5/FSKStream_%dHz_%dbps.wav', ... 

                   carrierFreq, symbolsPerSecond); 

rawSamplesFSK = wavread(filename); 

filename = sprintf('Recordings5/PSKStream_%dHz_%dbps.wav', ... 

                   carrierFreq, symbolsPerSecond); 

rawSamplesPSK = wavread(filename); 

  

%% Compute IR at time of FSK test. 

irFSK = fftshift( ... 

    real(xcorr(rawSamplesFSK(1:10*samplingRate), conj(streamChirp)))); 

[maxValue maxIndexFSK] = max(irFSK); 

earlyPeakIndex = ... 

    find(irFSK(maxIndexFSK - 0.0005*samplingRate:end) > 0.25*maxValue); 

[~, mainPeakIndex] = max(irFSK(maxIndexFSK - 0.0005*samplingRate:end)); 

offset = mainPeakIndex - earlyPeakIndex; 

irFSK = irFSK(maxIndexFSK - offset:maxIndexFSK + 0.050*samplingRate - offset); 

irFSK = irFSK / max(abs(irFSK)); 

figure; 

n = (1:length(irFSK))*1000/samplingRate; 

plot(n, irFSK); 

xlim([0 10]); 

ylim([-1 1]); 

title('Impulse Response of Tub during FSK Test', 'FontWeight', 'bold'); 

xlabel('Time Delay (ms)'); 

ylabel('Intensity'); 

figure; 

[h w] = freqz(irFSK, 1); 

f = w/(2*pi) * samplingRate/1000; 

subplot(2, 1, 1), 

plot(f, mag2db(abs(h))), 

xlim([0 f(end)]), 

ylim([-30 30]), 

title('Frequency Response', 'FontWeight', 'bold'), 

xlabel('Frequency (kHz)'), 

ylabel('Magnitude (dB)'); 

  

phase = unwrap(angle(h)) * 180/pi; 

subplot(2, 1, 2), 

plot(f, phase), 

xlim([0 f(end)]), 

title('Phase Response', 'FontWeight', 'bold'), 
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xlabel('Frequency (kHz)'), 

ylabel('Phase (degrees)'); 

  

irFSK = irFSK * 0.98; 

wavwrite(irFSK, samplingRate, 'Tub/IR_FSK.wav'); 

  

%% Compute IR at time of PSK test. 

irPSK = fftshift( ... 

    real(xcorr(rawSamplesPSK(1:10*samplingRate), conj(streamChirp)))); 

[maxValue maxIndexPSK] = max(irPSK); 

earlyPeakIndex = ... 

    find(irPSK(maxIndexPSK - 0.0005 * samplingRate:end) > 0.25*maxValue); 

[mainPeak mainPeakIndex] = max(irPSK(maxIndexPSK - 0.0005*samplingRate:end)); 

offset = mainPeakIndex - earlyPeakIndex; 

irPSK = irPSK(maxIndexPSK - offset:maxIndexPSK + 0.050*samplingRate - offset); 

irPSK = irPSK / max(abs(irPSK)); 

figure; 

n = (1:length(irPSK))*1000/samplingRate; 

plot(n, irPSK); 

xlim([0 10]); 

ylim([-1 1]); 

title('Impulse Response of Tub during PSK Test', 'FontWeight', 'bold'); 

xlabel('Time Delay (ms)'); 

ylabel('Intensity'); 

figure; 

[h w] = freqz(irPSK, 1); 

f = w/(2*pi) * samplingRate/1000; 

subplot(2, 1, 1), 

plot(f, mag2db(abs(h))), 

xlim([0 f(end)]), 

ylim([-30 30]), 

title('Frequency Response', 'FontWeight', 'bold'), 

xlabel('Frequency (kHz)'), 

ylabel('Magnitude (dB)'); 

  

phase = unwrap(angle(h)) * 180/pi; 

phase = phase * 180 / pi; 

subplot(2, 1, 2), 

plot(f, phase), 

xlim([0 f(end)]), 

title('Phase Response', 'FontWeight', 'bold'), 

xlabel('Frequency (kHz)'), 

ylabel('Phase (degrees)'); 

  

irPSK = irPSK * 0.98; 

wavwrite(irPSK, samplingRate, 'Tub/IR_PSK.wav'); 

  

%% Convolve with impulse response. 

txFSK = fconv(txFSK, irFSK'); 

txPSK = fconv(txPSK, irPSK'); 

  

%% Generate reference signals for symbols. 

t = 0:samplesPerBit-1; 

cos0 = cos(2 * pi * fc(1)/samplingRate * t); 

sin0 = sin(2 * pi * fc(1)/samplingRate * t); 

cos1 = cos(2 * pi * fc(2)/samplingRate * t); 

sin1 = sin(2 * pi * fc(2)/samplingRate * t); 

  

psk0 = -cos(2 * pi * carrierFreq/samplingRate * t); 

psk1 =  cos(2 * pi * carrierFreq/samplingRate * t); 
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if (symbolsPerSecond < 500) 

    chirpRange = [(carrierFreq - 500) (carrierFreq + 500)]; 

else 

    chirpRange = [(carrierFreq - symbolsPerSecond) ... 

                  (carrierFreq + symbolsPerSecond)]; 

end 

packetChirp = chirp(chirpRange(1), chirpRange(2), samplingRate, 0.05); 

  

%% Synchronize on packet chirp signals. 

correlatedSamples = real(fftshift(xcorr(txFSK, conj(packetChirp)))); 

[~, maxIndex] = max(correlatedSamples); 

len = length(correlatedSamples); 

if (maxIndex > len/2) 

    maxIndex = maxIndex - len; 

end 

start = maxIndex + length(packetChirp)+length(guardTime); 

txFSK = txFSK(start:start+samplesPerBit * numberOfBits); 

  

correlatedSamples = real(fftshift(xcorr(txPSK, conj(packetChirp)))); 

[~, maxIndex] = max(correlatedSamples); 

len = length(correlatedSamples); 

if (maxIndex > len/2) 

    maxIndex = maxIndex - len; 

end 

start = maxIndex + length(packetChirp)+length(guardTime); 

txPSK = txPSK(start:start+samplesPerBit * numberOfBits); 

  

%% Demodulation 

expectedData = dlmread('Reference/PacketBits.txt', ' '); 

expectedData = expectedData'; 

numberOfBits = length(expectedData); 

guardTime = zeros(1, 0.01*samplingRate); 

interPacketSilence = zeros(1, samplingRate); 

packet = zeros(1, samplesPerBit * numberOfBits); 

  

offsetFSK = maxIndexFSK + length(streamChirp) + length(interPacketSilence)/2; 

offsetPSK = maxIndexPSK + length(streamChirp) + length(interPacketSilence)/2; 

numberOfRawSamplesFSK = length(rawSamplesFSK); 

numberOfRawSamplesPSK = length(rawSamplesPSK); 

berFSK_e = zeros(1, numberOfPackets + 1); 

berFSK_q = zeros(1, numberOfPackets + 1); 

berPSK = zeros(1, numberOfPackets + 1); 

  

disp('Bit Error Rates (BERs)'); 

disp('FSK-E   FSK-Q   PSK'); 

disp('--------------------'); 

for iter = 1:numberOfPackets + 1 

    if (iter ~= numberOfPackets + 1) 

        endSample = min( ... 

            length(interPacketSilence) + samplesPerPacket + offsetFSK, ... 

            numberOfRawSamplesFSK); 

        snip = rawSamplesFSK(1 + offsetFSK:endSample); 

        correlatedSamples = real(fftshift(xcorr(snip, conj(packetChirp)))); 

        [~, maxIndex] = max(correlatedSamples); 

        start = maxIndex + length(packetChirp) + length(guardTime); 

        packet = snip(start:start + samplesPerBit*numberOfBits); 

        packet = packet'; 

    else 

        packet = txFSK; 
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    end 

  

    % Prepare FSK signal for envelope detector. 

    if (useLimiter) 

        zeroSignal = abs(hilbert(filterSignal( ... 

            hardlimit(packet), samplingRate, fc(1), symbolsPerSecond))); 

        oneSignal = abs(hilbert(filterSignal( ... 

            hardlimit(packet), samplingRate, fc(2), symbolsPerSecond))); 

    else 

        zeroSignal = abs(hilbert(filterSignal( ... 

            packet, samplingRate, fc(1), symbolsPerSecond))); 

        oneSignal = abs(hilbert(filterSignal( ... 

            packet, samplingRate, fc(2), symbolsPerSecond))); 

        maxZero = max(zeroSignal); 

        maxOne = max(oneSignal); 

        if (maxZero > maxOne) 

            oneSignal = oneSignal * (maxZero/maxOne); 

        else 

            zeroSignal = zeroSignal * (maxOne/maxZero); 

        end 

    end 

    diff = oneSignal - zeroSignal; 

  

    rxFSK_e = zeros(1, numberOfBits); 

    rxFSK_q = zeros(1, numberOfBits); 

    temp = floor(samplesPerBit / 2); 

    for i = 1:numberOfBits 

        % Envelope detector for FSK demodulation 

        % Sample in second half of symbol. 

        rcv = sum(diff((i-1)*samplesPerBit + temp:i*samplesPerBit)); 

        rxFSK_e(i) = (rcv > 0); 

  

        % Quadrature (energy) detector 

        if (useLimiter) 

            rcv = hardlimit(packet((i-1)*samplesPerBit + 1:i*samplesPerBit)); 

        else 

            rcv = packet((i-1)*samplesPerBit + 1:i*samplesPerBit); 

        end 

        Izero = rcv .* cos0; 

        Qzero = rcv .* sin0; 

        Ione = rcv .* cos1; 

        Qone = rcv .* sin1; 

        z1 = (sum(Izero))^2; 

        z2 = (sum(Qzero))^2; 

        z3 = (sum(Ione))^2; 

        z4 = (sum(Qone))^2; 

        energy0 = z1 + z2; 

        energy1 = z3 + z4; 

        rxFSK_q(i) = (energy1 > energy0); 

    end 

  

    berFSK_e(iter) = 100 * sum(abs(rxFSK_e - expectedData)) / numberOfBits; 

    berFSK_q(iter) = 100 * sum(abs(rxFSK_q - expectedData)) / numberOfBits; 

  

    if (iter ~= numberOfPackets + 1) 

        endSample = min( ... 

            length(interPacketSilence) + samplesPerPacket+offsetPSK, ... 

            numberOfRawSamplesPSK); 

        snip = rawSamplesPSK(1 + offsetPSK:endSample); 

        correlatedSamples = real(fftshift(xcorr(snip, conj(packetChirp)))); 
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        [~, maxIndex] = max(correlatedSamples); 

        start = maxIndex + length(packetChirp) + length(guardTime); 

        packet = snip(start:start + samplesPerBit*numberOfBits); 

        packet = packet'; 

    else 

        packet = txPSK; 

    end 

  

    if (iter == 1 || iter == numberOfPackets + 1) 

        firstSymbol = packet(1:samplesPerBit); 

        offset = 0; 

        oldZ0 = -inf; 

        oldZ1 = -inf; 

        phi = 0; 

        for i = 1:24 

            if (expectedData(1) == 1) 

                one = firstSymbol .* psk1; 

                z1 = (sum(one)); 

                if (z1 > oldZ1) 

                    oldZ1 = z1; 

                    offset = phi; 

                end 

                phi = phi + (2 * pi) / 24; 

                psk1 = cos(2 * pi * carrierFreq/samplingRate * t + phi); 

            else 

                zero = firstSymbol .* psk0; 

                z0 = (sum(zero)); 

                if (z0 > oldZ0) 

                    oldZ0 = z0; 

                    offset = phi; 

                end 

                phi = phi + (2 * pi) / 24; 

                psk0 = -cos(2 * pi * carrierFreq/samplingRate * t + phi); 

            end 

        end 

  

        psk0 = -cos(2 * pi * carrierFreq/samplingRate * t + offset); 

        psk1 =  cos(2 * pi * carrierFreq/samplingRate * t + offset); 

    end 

  

    % PSK demodulation via a correlation receiver 

    rxPSK = zeros(1, numberOfBits); 

    for i = 1:numberOfBits 

        rcv = packet((i-1)*samplesPerBit + 1:i*samplesPerBit); 

        zero = rcv .* psk0; 

        one = rcv .* psk1; 

        z0 = (sum(zero)); 

        z1 = (sum(one)); 

        rxPSK(i) = (z1 > z0); 

    end 

  

    berPSK(iter) = 100 * sum(abs(rxPSK - expectedData)) / numberOfBits; 

  

    % Display FSK/PSK bit error rates for a single packet. 

    if (iter ~= numberOfPackets + 1) 

        s = sprintf('%.2f\t%.2f\t%.2f', ... 

                    berFSK_e(iter), berFSK_q(iter), berPSK(iter)); 

        disp(s); 

  

        offsetFSK = offsetFSK + samplesPerPacket + length(interPacketSilence); 
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        offsetPSK = offsetPSK + samplesPerPacket + length(interPacketSilence); 

    end 

end 

  

%% Display average bit error rates. 

disp('--------------------'); 

avgBerFSK_e = 0; 

avgBerFSK_q = 0; 

avgBerPSK = 0; 

for i = 1:numberOfPackets 

    avgBerFSK_e = avgBerFSK_e + berFSK_e(i); 

    avgBerFSK_q = avgBerFSK_q + berFSK_q(i); 

    avgBerPSK = avgBerPSK + berPSK(i); 

end 

avgBerFSK_e = avgBerFSK_e / numberOfPackets; 

avgBerFSK_q = avgBerFSK_q / numberOfPackets; 

avgBerPSK = avgBerPSK / numberOfPackets; 

  

disp('Transmitted Data'); 

s = sprintf('BER for FSK modulation (envelope detection): %.2f%%', ... 

            avgBerFSK_e); 

disp(s); 

s = sprintf('BER for FSK modulation (quadrature receiver): %.2f%%', ... 

            avgBerFSK_q); 

disp(s); 

s = sprintf('BER for PSK modulation: %.2f%%', avgBerPSK); 

disp(s); 

disp('--------------------'); 

  

index = numberOfPackets + 1; 

disp('Simulation with Impulse Response'); 

s = sprintf('BER for FSK modulation (envelope detection): %.2f%%', ... 

            berFSK_e(index)); 

disp(s); 

s = sprintf('BER for FSK modulation (quadrature receiver): %.2f%%', ... 

            berFSK_q(index)); 

disp(s); 

s = sprintf('BER for PSK modulation: %.2f%%', berPSK(index)); 

disp(s); 

 

B.6 Main Function for OMNeT++ Simulation 

#include <stdio.h> 

#include "libchannel.h" 

#include "libphy.h" 

#include "cownedobject.h" 

#include "envirdefs.h" 

#include "startup.h" 

#include "ver.h" 

 

USING_NAMESPACE 

 

// 

// The main() function 

// 

ENVIR_API int main(int argc, char *argv[]) 

{ 

    cStaticFlag dummy; 
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    printf(OMNETPP_PRODUCT " Discrete Event Simulation " 

           " (C) 1992-2008 Andras Varga, OpenSim Ltd.\n"); 

    printf("Version: " OMNETPP_VERSION_STR ", build: " OMNETPP_BUILDID 

           ", edition: " OMNETPP_EDITION "\n"); 

    printf("See the license for distribution terms and warranty disclaimer\n"); 

 

    // Call MATLAB application initialization function. 

    if (!mclInitializeApplication(NULL,0)) { 

        fprintf(stderr, "Could not initialize the MATLAB application.\n"); 

        exit(-1); 

    } 

    // Call the library initialization functions. 

    if (!libchannelInitialize()){ 

        fprintf(stderr, "Could not initialize libchannel properly.\n"); 

        exit(-1); 

    } 

    if (!libphyInitialize()){ 

        fprintf(stderr, "Could not initialize libphy properly.\n"); 

        exit(-1); 

    } 

 

    int exitcode = setupUserInterface(argc, argv, NULL); 

 

    // Call the library termination functions. 

    libphyTerminate(); 

    libchannelTerminate(); 

    // Call MATLAB application termination function. 

    mclTerminateApplication(); 

 

    printf("\nEnd.\n"); 

 

    return exitcode; 

} 
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Appendix C  

Validation of Emulator in Chapter 3 

Comparison of bit error rates obtained with packet transmission through the office test environ-

ment (Average BER) versus convolution with an impulse response estimate (Simulated BER). 

 

C.1 7.5 kHz, 250 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

12:33 P.M. 

10/1/2009 

12:33 P.M. 

10/1/2009 

12:33 P.M. 

10/1/2009 

12:33 P.M. 

10/1/2009 

12:37 P.M. 

Frequency (Hz) 7500 

Bit Rate (bps) 250 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 0.00 

6 0.00 0.00 0.00 0.00 0.00 

7 0.00 0.00 0.00 0.00 0.00 

8 0.00 0.00 0.00 0.00 0.00 

9 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.00 

11 0.00 0.00 0.00 0.00 0.00 

12 0.00 0.00 0.00 0.00 0.00 

13 0.00 0.00 0.00 0.00 0.00 

14 0.00 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.00 0.00 0.00 

16 0.00 0.00 0.00 0.00 0.00 

17 0.00 0.00 0.00 0.00 0.00 

18 0.00 0.00 0.00 0.00 0.00 

19 0.00 0.00 0.00 0.00 0.00 

20 0.00 0.00 0.00 0.00 0.00 

Average BER 0.00 0.00 0.00 0.00 0.00 

Simulated BER 0.00 0.00 0.00 0.00 0.00 

% Difference 0.00 0.00 0.00 0.00 0.00 

 

 



198 
 

 
 

C.2 7.5 kHz, 500 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

12:43 P.M. 

10/1/2009 

12:43 P.M. 

10/1/2009 

12:43 P.M. 

10/1/2009 

12:43 P.M. 

10/1/2009 

12:48 P.M. 

Frequency (Hz) 7500 

Bit Rate (bps) 500 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 0.00 

6 0.00 0.00 0.00 0.00 0.00 

7 0.00 0.00 0.00 0.00 0.00 

8 0.00 0.00 0.00 0.00 0.00 

9 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.00 

11 0.00 0.00 0.00 0.00 0.00 

12 0.00 0.00 0.00 0.00 0.00 

13 0.00 0.00 0.00 0.00 0.00 

14 0.00 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.00 0.00 0.00 

16 0.00 0.00 0.00 0.00 0.00 

17 0.00 0.00 0.00 0.00 0.00 

18 0.00 0.00 0.00 0.00 0.00 

19 0.00 0.00 0.00 0.00 0.00 

20 0.00 0.00 0.00 0.00 0.00 

21 0.00 0.00 0.00 0.00 0.00 

22 0.00 0.00 0.00 0.00 0.00 

23 0.00 0.00 0.00 0.00 0.00 

24 0.00 0.00 0.00 0.00 0.00 

25 0.00 0.00 0.00 0.00 0.00 

26 0.00 0.00 0.00 0.00 0.00 

27 0.00 0.00 0.00 0.00 0.00 

28 0.00 0.00 0.00 0.00 0.00 

29 0.00 0.00 0.00 0.00 0.00 

30 0.00 0.00 0.00 0.00 0.00 

31 0.00 0.00 0.00 0.00 0.00 

32 0.00 0.00 0.00 0.00 0.00 

33 0.00 0.00 0.00 0.00 0.00 

34 0.00 0.00 0.00 0.00 0.00 

35 0.00 0.00 0.00 0.00 0.00 

36 0.00 0.00 0.00 0.00 0.00 

37 0.00 0.00 0.00 0.00 0.00 

38 0.00 0.00 0.00 0.00 0.00 

39 0.00 0.00 0.00 0.00 0.00 
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40 0.00 0.00 0.00 0.00 0.00 

41 0.00 0.00 0.00 0.00 0.00 

42 0.00 0.00 0.00 0.00 0.00 

43 0.00 0.00 0.00 0.00 0.00 

44 0.00 0.00 0.00 0.00 0.00 

45 0.00 0.00 0.00 0.00 0.00 

46 0.00 0.00 0.00 0.00 0.00 

47 0.00 0.00 0.00 0.00 0.00 

48 0.00 0.00 0.00 0.00 0.00 

49 0.00 0.00 0.00 0.00 0.00 

50 0.00 0.00 0.00 0.00 0.00 

Average BER 0.00 0.00 0.00 0.00 0.00 

Simulated BER 0.00 0.00 0.00 0.00 0.00 

% Difference 0.00 0.00 0.00 0.00 0.00 

 

C.3 7.5 kHz, 1250 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

12:51 P.M. 

10/1/2009 

12:51 P.M. 

10/1/2009 

12:51 P.M. 

10/1/2009 

12:51 P.M. 

10/1/2009 

12:54 P.M. 

Frequency (Hz) 7500 

Bit Rate (bps) 1250 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 6.10 12.99 6.05 4.88 0.00 

2 5.96 12.79 6.25 4.74 0.00 

3 6.10 12.89 6.30 4.74 0.00 

4 5.91 12.84 6.15 4.54 0.00 

5 6.01 12.89 6.15 5.03 0.00 

6 6.05 12.74 6.10 4.54 0.00 

7 5.91 12.79 6.25 4.39 0.00 

8 5.96 12.50 6.20 4.39 0.00 

9 5.91 12.84 6.01 4.83 0.00 

10 5.62 12.55 6.20 4.49 0.00 

11 5.76 12.74 6.20 4.69 0.00 

12 5.32 12.65 6.10 4.30 0.00 

13 5.47 12.55 6.05 4.64 0.00 

14 5.52 12.65 6.15 4.54 0.00 

15 5.57 12.60 6.10 4.20 0.00 

16 5.27 12.65 6.01 4.49 0.00 

17 5.47 12.30 6.05 4.59 0.00 

18 5.32 12.50 6.05 4.39 0.00 

19 5.13 12.30 5.96 4.54 0.00 

20 5.18 12.40 5.86 4.05 0.00 

21 5.08 12.55 5.96 4.15 0.00 

22 5.08 12.26 5.91 4.35 0.00 

23 5.22 12.35 5.86 4.30 0.00 

24 4.83 12.65 5.96 4.30 0.00 
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25 4.74 12.35 6.05 4.20 0.00 

26 4.74 12.35 5.86 4.20 0.00 

27 4.74 12.30 5.71 3.91 0.00 

28 4.30 11.72 5.91 4.25 0.00 

29 4.49 12.21 5.96 4.10 0.00 

30 4.49 11.96 5.91 4.15 0.00 

31 4.69 12.16 5.81 3.91 0.00 

32 4.10 12.11 5.62 4.00 0.00 

33 4.64 12.50 5.57 4.00 0.00 

34 4.30 12.06 5.42 4.05 0.00 

35 4.15 12.06 5.52 4.30 0.00 

36 4.30 12.11 5.62 4.15 0.00 

37 3.91 11.62 5.57 3.86 0.00 

38 3.76 11.57 5.52 3.71 0.00 

39 3.86 11.96 5.57 4.05 0.00 

40 3.76 12.11 5.52 4.10 0.00 

41 3.37 11.77 5.27 3.76 0.00 

42 3.32 11.96 5.47 3.96 0.00 

43 3.03 11.77 5.42 3.86 0.00 

44 3.37 11.67 5.27 3.81 0.00 

45 3.08 11.67 5.32 3.86 0.00 

46 3.61 11.77 5.18 3.71 0.00 

47 2.98 11.62 5.18 3.86 0.00 

48 2.98 11.43 5.08 3.56 0.00 

49 2.78 11.18 5.22 3.86 0.00 

50 2.88 11.57 5.03 3.66 0.00 

Average BER 4.68 12.25 5.79 4.22 0.00 

Simulated BER 0.00 1.76 0.00 3.03 0.00 

% Difference 4.68 10.49 5.79 1.19 0.00 

 

C.4 7.5 kHz, 2500 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

12:57 P.M. 

10/1/2009 

12:57 P.M. 

10/1/2009 

12:57 P.M. 

10/1/2009 

12:57 P.M. 

10/1/2009 1:00 

P.M. 

Frequency (Hz) 7500 

Bit Rate (bps) 2500 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 5.08 3.86 2.15 0.44 0.00 

2 4.15 3.86 2.20 0.44 0.00 

3 4.59 3.61 2.10 0.34 0.00 

4 4.39 3.86 2.05 0.39 0.00 

5 4.98 3.76 2.25 0.34 0.00 

6 4.93 4.00 2.20 0.39 0.00 

7 4.79 3.96 2.20 0.44 0.00 

8 4.54 3.81 2.20 0.44 0.00 
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9 4.54 3.61 2.20 0.34 0.00 

10 4.79 3.81 2.15 0.39 0.00 

11 4.64 3.86 2.20 0.34 0.00 

12 4.49 3.76 2.10 0.39 0.00 

13 4.83 3.91 2.10 0.39 0.00 

14 5.03 3.76 2.00 0.34 0.00 

15 5.03 3.91 2.15 0.39 0.00 

16 4.15 3.61 2.29 0.39 0.00 

17 4.44 3.71 2.15 0.34 0.00 

18 4.64 3.56 2.34 0.39 0.00 

19 4.83 3.86 2.15 0.34 0.00 

20 4.49 3.47 2.20 0.39 0.00 

21 4.59 3.71 2.15 0.44 0.00 

22 4.64 3.52 1.95 0.39 0.00 

23 4.49 3.96 2.15 0.34 0.00 

24 4.79 3.66 2.15 0.39 0.00 

25 4.79 3.66 2.20 0.39 0.00 

26 4.79 3.66 2.10 0.34 0.00 

27 4.54 3.56 2.15 0.39 0.00 

28 4.35 3.61 2.15 0.34 0.00 

29 4.25 3.71 2.25 0.34 0.00 

30 5.22 3.66 2.20 0.44 0.00 

31 4.79 3.42 2.29 0.39 0.00 

32 4.20 3.52 2.15 0.24 0.00 

33 4.69 3.61 2.05 0.29 0.00 

34 4.98 3.42 2.10 0.39 0.00 

35 4.20 3.71 2.10 0.34 0.00 

36 4.69 3.76 2.00 0.39 0.00 

37 4.39 3.86 2.05 0.34 0.00 

38 4.39 3.71 2.20 0.34 0.00 

39 4.64 3.76 2.10 0.34 0.00 

40 4.39 3.76 2.05 0.29 0.00 

41 4.39 3.66 2.10 0.29 0.00 

42 4.79 3.71 2.05 0.34 0.00 

43 4.98 3.71 2.15 0.34 0.00 

44 4.54 3.76 2.00 0.29 0.00 

45 4.79 3.47 2.05 0.39 0.00 

46 5.08 3.47 2.10 0.34 0.00 

47 4.39 3.56 2.10 0.34 0.00 

48 4.35 3.61 2.10 0.34 0.00 

49 4.64 3.66 2.05 0.34 0.00 

50 4.79 3.42 1.95 0.29 0.00 

Average BER 4.64 3.70 2.13 0.36 0.00 

Simulated BER 4.44 2.93 14.60 4.93 0.00 

% Difference 0.20 0.77 12.47 4.57 0.00 
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C.5 7.5 kHz, 3750 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

1:02 P.M. 

10/1/2009 1:02 

P.M. 

10/1/2009 

1:02 P.M. 

10/1/2009 1:02 

P.M. 

10/1/2009 1:04 

P.M. 

Frequency (Hz) 7500 

Bit Rate (bps) 3750 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 2.78 0.68 0.44 7.18 0.05 

2 2.83 0.68 0.44 7.13 0.00 

3 2.73 0.73 0.44 7.08 0.05 

4 2.88 0.73 0.44 7.23 0.00 

5 2.83 0.63 0.44 7.23 0.00 

6 2.73 0.68 0.44 7.13 0.00 

7 2.88 0.68 0.44 7.03 0.00 

8 2.78 0.68 0.44 7.23 0.00 

9 2.93 0.68 0.44 7.13 0.00 

10 2.69 0.68 0.44 7.28 0.00 

11 2.78 0.73 0.44 7.18 0.00 

12 2.64 0.83 0.44 7.08 0.00 

13 2.59 0.73 0.44 7.03 0.00 

14 2.59 0.68 0.44 7.28 0.00 

15 2.83 0.73 0.44 7.18 0.00 

16 2.83 0.73 0.44 6.88 0.00 

17 2.69 0.68 0.44 7.03 0.00 

18 2.73 0.78 0.44 7.13 0.05 

19 2.64 0.78 0.44 7.23 0.05 

20 2.83 0.68 0.44 7.03 0.00 

21 2.73 0.63 0.44 7.13 0.05 

22 2.64 0.68 0.44 7.32 0.05 

23 2.73 0.78 0.44 7.08 0.05 

24 3.17 0.68 0.44 7.28 0.10 

25 2.59 0.68 0.44 7.23 0.20 

26 2.59 0.68 0.44 7.13 0.20 

27 2.88 0.73 0.44 7.23 0.20 

28 2.69 0.68 0.44 7.18 0.20 

29 2.98 0.73 0.49 7.32 0.24 

30 2.59 0.68 0.44 7.37 0.24 

31 2.64 0.73 0.44 7.32 0.24 

32 2.69 0.73 0.49 7.47 0.29 

33 2.78 0.78 0.44 7.32 0.24 

34 2.69 0.73 0.44 7.23 0.24 

35 2.64 0.73 0.44 7.18 0.24 

36 2.64 0.78 0.44 7.42 0.24 

37 2.59 0.73 0.49 7.32 0.24 

38 2.88 0.68 0.49 7.23 0.24 

39 2.73 0.68 0.44 7.57 0.15 
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40 2.78 0.68 0.44 7.23 0.15 

41 2.78 0.68 0.44 7.42 0.05 

42 2.78 0.68 0.49 7.08 0.05 

43 3.13 0.73 0.49 7.47 0.05 

44 2.64 0.68 0.44 7.42 0.05 

45 2.88 0.68 0.49 7.18 0.05 

46 2.64 0.73 0.44 7.28 0.00 

47 2.73 0.73 0.44 7.47 0.00 

48 2.78 0.68 0.44 7.08 0.00 

49 2.88 0.68 0.44 7.28 0.00 

50 2.73 0.68 0.49 7.37 0.00 

Average BER 2.76 0.71 0.45 7.23 0.09 

Simulated BER 3.96 0.83 0.54 9.18 0.00 

% Difference 1.20 0.12 0.09 1.95 0.09 

 

C.6 12.5 kHz, 250 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

1:47 P.M. 

10/1/2009 1:47 

P.M. 

10/1/2009 

1:47 P.M. 

10/1/2009 1:47 

P.M. 

10/1/2009 1:50 

P.M. 

Frequency (Hz) 12500 

Bit Rate (bps) 250 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 24.46 0.00 0.00 0.00 0.00 

2 24.46 0.00 0.00 0.00 0.00 

3 24.46 0.00 0.00 0.00 0.00 

4 24.46 0.00 0.00 0.00 0.00 

5 24.46 0.00 0.00 0.00 0.00 

6 24.46 0.00 0.00 0.00 0.00 

7 24.46 0.00 0.00 0.00 0.00 

8 24.46 0.00 0.00 0.00 0.00 

9 24.46 0.00 0.00 0.00 0.00 

10 24.46 0.00 0.00 0.00 0.00 

11 24.46 0.00 0.00 0.00 0.00 

12 24.46 0.00 0.00 0.00 0.00 

13 24.46 0.00 0.00 0.00 0.00 

14 24.46 0.00 0.00 0.00 0.00 

15 24.46 0.00 0.00 0.00 0.00 

16 24.46 0.00 0.00 0.00 0.00 

17 24.46 0.00 0.00 0.00 0.00 

18 24.46 0.00 0.00 0.00 0.00 

19 24.46 0.00 0.00 0.00 0.00 

20 24.46 0.00 0.00 0.00 0.00 

Average BER 24.46 0.00 0.00 0.00 0.00 

Simulated BER 24.46 0.00 0.00 0.00 0.00 

% Difference 0.00 0.00 0.00 0.00 0.00 
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C.7 12.5 kHz, 500 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

1:55 P.M. 

10/1/2009 1:55 

P.M. 

10/1/2009 

1:55 P.M. 

10/1/2009 1:55 

P.M. 

10/1/2009 2:04 

P.M. 

Frequency (Hz) 12500 

Bit Rate (bps) 500 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 24.46 0.00 0.00 0.00 0.00 

2 24.46 0.00 0.00 0.00 0.00 

3 24.46 0.00 0.00 0.00 0.00 

4 24.46 0.00 0.00 0.00 0.00 

5 24.46 0.00 0.00 0.00 0.00 

6 24.46 0.00 0.00 0.00 0.00 

7 24.46 0.00 0.00 0.00 0.00 

8 24.46 0.00 0.00 0.00 0.00 

9 24.46 0.00 0.00 0.00 0.00 

10 24.46 0.00 0.00 0.00 0.00 

11 24.46 0.00 0.00 0.00 0.00 

12 24.46 0.00 0.00 0.00 0.00 

13 24.46 0.00 0.00 0.00 0.00 

14 24.46 0.00 0.00 0.00 0.00 

15 24.46 0.00 0.00 0.00 0.00 

16 24.46 0.00 0.00 0.00 0.00 

17 24.46 0.00 0.00 0.00 0.00 

18 24.46 0.00 0.00 0.00 0.00 

19 24.46 0.00 0.00 0.00 0.00 

20 24.46 0.00 0.00 0.00 0.00 

21 24.46 0.00 0.00 0.00 0.00 

22 24.46 0.00 0.00 0.00 0.00 

23 24.46 0.00 0.00 0.00 0.00 

24 24.46 0.00 0.00 0.00 0.00 

25 24.46 0.00 0.00 0.00 0.00 

26 24.46 0.00 0.00 0.00 0.00 

27 24.46 0.00 0.00 0.00 0.00 

28 24.46 0.00 0.00 0.00 0.00 

29 24.46 0.00 0.00 0.00 0.00 

30 24.46 0.00 0.00 0.00 0.00 

31 24.46 0.00 0.00 0.00 0.00 

32 24.46 0.00 0.00 0.00 0.00 

33 24.46 0.00 0.00 0.00 0.00 

34 24.46 0.00 0.00 0.00 0.00 

35 24.46 0.00 0.00 0.00 0.00 

36 24.46 0.00 0.00 0.00 0.00 

37 24.46 0.00 0.00 0.00 0.00 

38 24.46 0.00 0.00 0.00 0.00 
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39 24.46 0.00 0.00 0.00 0.00 

40 24.46 0.00 0.00 0.00 0.00 

41 24.46 0.00 0.00 0.00 0.00 

42 24.46 0.00 0.00 0.00 0.00 

43 24.46 0.00 0.00 0.00 0.00 

44 24.46 0.00 0.00 0.00 0.00 

45 24.46 0.00 0.00 0.00 0.00 

46 24.46 0.00 0.00 0.00 0.00 

47 24.46 0.00 0.00 0.00 0.00 

48 24.46 0.00 0.00 0.00 0.00 

49 24.46 0.00 0.00 0.00 0.00 

50 24.46 0.00 0.00 0.00 0.00 

Average BER 24.46 0.00 0.00 0.00 0.00 

Simulated BER 24.46 0.00 24.41 0.00 0.00 

% Difference 0.00 0.00 24.41 0.00 0.00 

 

C.8 12.5 kHz, 1250 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

2:07 P.M. 

10/1/2009 2:07 

P.M. 

10/1/2009 

2:07 P.M. 

10/1/2009 2:07 

P.M. 

10/1/2009 2:11 

P.M. 

Frequency (Hz) 12500 

Bit Rate (bps) 1250 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 0.00 15.97 21.29 16.41 0.00 

2 0.05 15.77 20.17 16.21 0.00 

3 0.00 15.43 19.97 15.92 0.00 

4 0.10 15.92 20.70 16.31 0.00 

5 0.00 15.92 20.85 16.21 0.00 

6 0.00 15.72 20.07 16.11 0.00 

7 0.15 15.63 20.26 16.02 0.00 

8 0.15 15.77 20.65 16.21 0.00 

9 0.05 15.92 20.85 16.26 0.00 

10 0.05 15.82 20.26 16.06 0.00 

11 0.15 15.67 20.36 16.16 0.00 

12 0.10 15.72 20.70 16.16 0.00 

13 0.10 15.92 20.80 16.36 0.00 

14 0.10 15.77 20.31 16.16 0.00 

15 0.10 15.67 20.51 16.11 0.00 

16 0.10 15.63 20.80 16.11 0.00 

17 0.05 15.77 20.56 16.16 0.00 

18 0.10 15.67 20.36 16.02 0.00 

19 0.10 15.67 20.46 16.06 0.00 

20 0.10 15.72 20.61 16.16 0.00 

21 0.05 15.72 20.70 16.11 0.00 

22 0.05 15.72 20.51 16.16 0.00 
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23 0.05 15.67 20.36 16.06 0.00 

24 0.05 15.82 20.70 16.26 0.00 

25 0.00 15.72 20.70 16.21 0.00 

26 0.00 15.77 20.70 16.21 0.00 

27 0.00 15.72 20.56 15.97 0.00 

28 0.05 15.77 20.61 16.16 0.00 

29 0.00 15.67 20.56 15.97 0.00 

30 0.00 15.63 20.61 16.02 0.00 

31 0.00 15.72 20.56 16.06 0.00 

32 0.05 15.63 20.65 15.97 0.00 

33 0.00 15.63 20.70 15.92 0.00 

34 0.00 15.72 20.65 16.11 0.00 

35 0.00 15.67 20.61 16.11 0.00 

36 0.00 15.63 20.56 15.97 0.00 

37 0.10 15.63 20.65 15.92 0.00 

38 0.00 15.82 20.65 16.11 0.00 

39 0.44 16.11 21.14 16.5 0.00 

40 0.00 15.63 20.02 15.97 0.00 

41 0.00 15.33 19.43 15.72 0.00 

42 0.00 15.33 19.43 15.63 0.00 

43 0.00 15.23 19.29 15.53 0.00 

44 0.00 15.23 19.38 15.53 0.00 

45 0.00 15.33 19.43 15.63 0.00 

46 0.00 15.19 19.48 15.43 0.00 

47 0.00 15.53 19.38 15.87 0.00 

48 0.00 15.38 19.43 15.67 0.00 

49 0.00 15.28 19.53 15.58 0.00 

50 0.00 15.23 19.43 15.48 0.00 

Average BER 0.05 15.65 20.34 16.02 0.00 

Simulated BER 0.29 14.26 20.02 14.94 0.00 

% Difference 0.24 1.39 0.32 1.08 0.00 

 

C.9 12.5 kHz, 2500 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

2:13 P.M. 

10/1/2009 

2:13 P.M. 

10/1/2009 

2:13 P.M. 

10/1/2009 

2:13 P.M. 
10/1/2009 2:16 

P.M. 
Frequency (Hz) 12500 

Bit Rate (bps) 2500 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 7.62 13.04 12.45 13.43 26.37 

2 13.43 13.23 12.45 13.33 25.59 

3 9.91 13.23 12.45 13.48 25.68 

4 12.89 13.13 12.45 13.28 25.68 

5 12.01 13.23 12.45 13.43 25.49 

6 12.45 13.23 12.45 13.33 24.90 
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7 10.69 13.23 12.45 13.43 25.10 

8 12.74 13.23 12.45 13.48 25.10 

9 10.84 13.23 12.45 13.38 25.54 

10 12.35 13.23 12.45 13.38 25.93 

11 11.08 13.23 12.45 13.48 26.90 

12 12.45 13.23 12.45 13.43 12.84 

13 12.16 13.23 12.45 13.33 11.87 

14 11.18 13.23 12.45 13.48 12.06 

15 12.45 13.23 12.45 13.43 11.33 

16 11.87 13.23 12.45 13.48 11.18 

17 12.30 13.23 12.45 13.33 10.74 

18 11.67 13.23 12.45 13.43 10.94 

19 12.89 13.23 12.45 13.48 11.47 

20 12.06 13.23 12.45 13.48 11.52 

21 12.30 13.23 12.45 13.43 11.43 

22 12.99 13.23 12.45 13.43 12.11 

23 12.50 13.23 12.45 13.48 12.06 

24 11.72 13.23 12.45 13.48 11.72 

25 12.55 13.23 12.45 13.48 11.96 

26 12.55 13.23 12.45 13.48 11.67 

27 12.65 13.28 12.45 13.53 11.87 

28 12.11 13.28 12.45 13.38 11.87 

29 11.82 13.28 12.45 13.53 48.97 

30 12.30 13.28 12.45 13.53 49.02 

31 12.60 13.28 12.45 13.53 11.04 

32 11.91 13.23 12.45 13.48 10.69 

33 12.84 13.28 12.45 13.53 10.64 

34 12.60 13.28 12.45 13.53 10.79 

35 12.65 13.28 12.45 13.53 10.94 

36 12.40 13.23 12.45 13.48 11.43 

37 12.30 13.28 12.45 13.48 48.58 

38 12.50 13.28 12.45 13.53 48.97 

39 12.65 13.28 12.45 13.53 48.93 

40 13.13 13.28 12.45 13.48 49.02 

41 12.16 13.33 12.45 13.53 49.41 

42 12.94 13.28 12.45 13.48 49.27 

43 12.65 13.28 12.45 13.53 49.22 

44 13.33 13.28 12.45 13.43 48.29 

45 12.94 13.28 12.45 13.53 48.78 

46 13.09 13.28 12.45 13.53 48.44 

47 13.33 13.33 12.45 13.53 47.95 

48 12.70 13.28 12.45 13.53 30.71 

49 12.11 13.33 12.45 13.57 47.71 

50 12.74 13.28 12.45 13.53 30.91 

Average BER 12.24 13.25 12.45 13.47 25.81 

Simulated BER 6.74 12.74 12.45 13.18 39.06 

% Difference 5.50 0.51 0.00 0.29 13.25 

 



208 
 

 
 

C.10 12.5 kHz, 3125 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

2:18 P.M. 

10/1/2009 2:18 

P.M. 

10/1/2009 

2:18 P.M. 

10/1/2009 2:18 

P.M. 

10/1/2009 2:20 

P.M. 

Frequency (Hz) 12500 

Bit Rate (bps) 3125 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 42.63 33.25 31.98 34.77 33.11 

2 42.63 33.35 32.13 34.81 26.56 

3 42.63 33.45 32.03 34.81 27.44 

4 42.63 33.50 32.13 34.86 30.08 

5 42.63 33.45 32.03 34.81 30.66 

6 42.63 33.40 32.28 34.81 30.18 

7 42.63 33.45 32.08 34.81 32.28 

8 42.63 33.45 32.18 34.81 32.52 

9 42.63 33.45 32.08 34.81 32.86 

10 42.63 33.45 32.18 34.81 33.74 

11 42.63 33.40 32.13 34.81 34.13 

12 42.63 33.40 32.18 34.81 34.57 

13 42.63 33.50 32.23 34.86 34.62 

14 42.63 33.50 32.32 34.81 34.08 

15 42.63 33.45 32.23 34.81 34.38 

16 42.63 33.45 32.28 34.81 34.77 

17 42.63 33.50 32.32 34.86 34.72 

18 42.63 33.45 32.32 34.81 34.47 

19 42.63 33.40 32.32 34.91 33.69 

20 42.63 33.59 32.52 34.86 33.40 

21 42.63 33.59 32.57 34.86 32.76 

22 42.63 33.59 32.62 34.86 31.88 

23 42.63 33.50 32.71 34.86 31.79 

24 42.63 33.54 32.62 34.81 31.79 

25 42.63 33.50 32.62 34.86 32.32 

26 42.63 33.45 32.71 34.86 31.05 

27 42.63 33.69 32.62 35.01 32.47 

28 42.63 33.59 32.76 34.91 33.74 

29 42.63 33.59 32.71 34.96 35.25 

30 42.63 33.59 32.86 34.91 36.04 

31 42.63 33.59 32.91 34.86 36.28 

32 42.63 33.69 32.91 34.96 36.91 

33 42.63 33.64 32.86 34.91 37.21 

34 42.63 33.69 32.67 35.01 36.87 

35 42.63 33.64 32.81 34.91 36.52 

36 42.63 33.59 32.91 34.91 36.08 

37 42.63 33.64 32.91 34.96 35.94 

38 42.63 33.79 32.86 35.06 34.47 

39 42.63 33.84 32.91 35.06 35.35 
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40 42.63 33.79 33.06 35.06 34.52 

41 42.63 33.69 32.96 35.01 35.06 

42 42.63 33.74 32.91 34.96 34.52 

43 42.63 33.84 33.06 35.06 34.62 

44 42.63 33.79 33.06 35.01 34.77 

45 42.63 33.74 33.01 35.06 34.62 

46 42.63 33.74 33.06 34.96 34.28 

47 42.63 33.89 33.15 35.06 33.45 

48 42.63 33.84 33.15 35.11 33.89 

49 42.63 33.89 33.20 35.06 33.25 

50 42.63 33.94 33.20 35.11 32.76 

Average BER 42.63 33.59 32.61 34.91 33.65 

Simulated BER 40.09 31.15 28.61 32.76 0.34 

% Difference 2.54 2.44 4.00 2.15 33.31 

 

C.11 17.5 kHz, 250 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

2:24 P.M. 

10/1/2009 2:24 

P.M. 

10/1/2009 

2:24 P.M. 

10/1/2009 2:24 

P.M. 

10/1/2009 2:28 

P.M. 

Frequency (Hz) 17500 

Bit Rate (bps) 250 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 0.00 

6 0.00 0.00 0.00 0.00 0.00 

7 0.00 0.00 0.00 0.00 0.00 

8 0.00 0.00 0.00 0.00 0.00 

9 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.00 

11 0.00 0.00 0.00 0.00 0.00 

12 0.00 0.00 0.00 0.00 0.00 

13 0.00 0.00 0.00 0.00 0.00 

14 0.00 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.00 0.00 0.00 

16 0.00 0.00 0.00 0.00 0.00 

17 0.00 0.00 0.00 0.00 0.00 

18 0.00 0.00 0.00 0.00 0.00 

19 0.00 0.00 0.00 0.00 0.00 

20 0.00 0.00 0.00 0.00 0.00 

Average BER 0.00 0.00 0.00 0.00 0.00 

Simulated BER 0.00 0.00 0.00 0.00 0.00 

% Difference 0.00 0.00 0.00 0.00 0.00 
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C.12 17.5 kHz, 500 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

2:34 P.M. 

10/1/2009 2:34 

P.M. 

10/1/2009 

2:34 P.M. 

10/1/2009 2:34 

P.M. 

10/1/2009 2:39 

P.M. 

Frequency (Hz) 17500 

Bit Rate (bps) 500 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 0.00 0.29 0.00 1.61 0.00 

2 0.00 0.49 0.00 1.71 0.00 

3 0.00 0.24 0.00 1.71 0.00 

4 0.00 0.49 0.00 1.71 0.00 

5 0.00 0.24 0.00 1.76 0.00 

6 0.00 0.54 0.00 1.71 0.00 

7 0.00 0.20 0.00 1.56 0.00 

8 0.00 0.63 0.00 1.86 0.00 

9 0.00 0.54 0.00 1.76 0.00 

10 0.00 0.49 0.00 1.76 0.00 

11 0.00 0.73 0.00 1.86 0.00 

12 0.00 0.68 0.00 2.29 0.00 

13 0.00 0.44 0.00 2.05 0.00 

14 0.00 0.83 0.00 2.05 0.00 

15 0.00 0.68 0.00 2.10 0.00 

16 0.00 0.73 0.00 2.59 0.00 

17 0.00 0.63 0.00 2.39 0.00 

18 0.00 0.88 0.00 2.59 0.00 

19 0.00 0.78 0.00 2.44 0.00 

20 0.00 0.98 0.00 2.98 0.00 

21 0.00 0.93 0.00 3.42 0.00 

22 0.00 1.03 0.00 3.13 0.00 

23 0.00 1.22 0.00 3.32 0.00 

24 0.00 1.22 0.00 3.56 0.00 

25 0.00 1.22 0.00 3.56 0.00 

26 0.00 1.42 0.00 3.22 0.00 

27 0.00 1.51 0.00 3.22 0.00 

28 0.00 1.81 0.00 3.52 0.00 

29 0.00 2.20 0.00 4.79 0.00 

30 0.00 2.44 0.00 4.54 0.00 

31 0.00 2.54 0.00 4.83 0.00 

32 0.00 2.64 0.00 4.79 0.00 

33 0.00 2.64 0.00 4.74 0.00 

34 0.00 2.98 0.00 5.42 0.00 

35 0.00 3.37 0.00 5.18 0.00 

36 0.00 3.08 0.00 5.03 0.00 

37 0.00 3.17 0.00 5.32 0.00 

38 0.00 3.61 0.00 5.42 0.00 
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39 0.00 3.66 0.00 5.66 0.00 

40 0.00 3.96 0.00 6.40 0.00 

41 0.00 4.10 0.00 6.45 0.00 

42 0.00 4.39 0.00 6.54 0.00 

43 0.00 4.15 0.00 6.30 0.00 

44 0.00 4.49 0.00 6.74 0.00 

45 0.00 4.35 0.00 6.35 0.00 

46 0.00 4.93 0.00 6.49 0.00 

47 0.00 4.79 0.00 6.54 0.00 

48 0.00 4.39 0.00 6.10 0.00 

49 0.00 4.49 0.00 6.20 0.00 

50 0.00 6.88 0.00 8.20 0.00 

Average BER 0.00 2.10 0.00 3.91 0.00 

Simulated BER 0.00 0.00 0.00 0.00 0.00 

% Difference 0.00 2.10 0.00 3.91 0.00 

 

C.13 17.5 kHz, 1250 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

2:43 P.M. 

10/1/2009 2:43 

P.M. 

10/1/2009 

2:43 P.M. 

10/1/2009 2:43 

P.M. 

10/1/2009 2:46 

P.M. 

Frequency (Hz) 17500 

Bit Rate (bps) 1250 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 24.51 20.46 23.00 19.43 0.00 

2 22.51 18.41 21.78 18.26 0.00 

3 22.71 18.60 22.12 18.55 0.00 

4 23.00 19.19 22.27 19.34 0.00 

5 24.46 20.51 22.95 19.38 0.00 

6 22.51 18.55 21.88 18.41 0.00 

7 22.85 18.65 22.02 18.55 0.00 

8 23.00 18.99 22.27 18.99 0.00 

9 22.90 19.09 22.22 19.04 0.00 

10 22.66 18.85 21.97 18.75 0.00 

11 22.80 18.70 22.02 18.60 0.00 

12 22.90 18.90 22.17 18.90 0.00 

13 22.90 18.85 22.22 18.90 0.00 

14 22.80 18.75 22.12 18.70 0.00 

15 22.71 18.99 22.17 18.90 0.00 

16 22.95 18.95 22.22 18.99 0.00 

17 22.90 19.14 22.27 19.24 0.00 

18 22.95 18.90 22.17 18.95 0.00 

19 22.80 18.99 22.22 19.04 0.00 

20 22.90 19.09 22.31 19.14 0.00 

21 23.00 18.95 22.22 19.19 0.00 

22 22.95 18.85 22.22 19.09 0.00 
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23 22.95 18.85 22.12 18.95 0.00 

24 22.95 18.95 22.12 19.24 0.00 

25 23.00 18.80 22.22 19.09 0.00 

26 22.90 18.90 22.22 19.04 0.00 

27 22.95 18.99 22.17 19.19 0.00 

28 23.00 19.14 22.27 19.34 0.00 

29 22.95 18.95 22.27 19.29 0.00 

30 22.80 19.04 22.22 19.29 0.00 

31 22.90 19.34 22.31 19.58 0.00 

32 23.00 19.24 22.36 19.48 0.00 

33 23.00 19.14 22.36 19.43 0.00 

34 22.90 19.34 22.36 19.58 0.00 

35 22.95 19.29 22.31 19.53 0.00 

36 23.00 19.48 22.51 19.73 0.00 

37 23.00 19.48 22.46 19.68 0.00 

38 22.90 19.38 22.46 19.63 0.00 

39 22.95 19.38 22.41 19.63 0.00 

40 23.00 19.48 22.51 19.63 0.00 

41 23.00 19.73 22.51 19.78 0.00 

42 22.90 19.78 22.51 19.92 0.00 

43 23.00 19.68 22.56 19.78 0.00 

44 22.90 19.78 22.56 19.92 0.00 

45 22.90 19.68 22.51 19.78 0.00 

46 22.85 19.63 22.56 19.87 0.00 

47 23.00 19.78 22.51 19.73 0.00 

48 22.95 19.82 22.56 19.78 0.00 

49 22.95 20.02 22.56 20.17 0.00 

50 23.00 20.07 22.56 20.07 0.00 

Average BER 22.96 19.23 22.32 19.29 0.00 

Simulated BER 43.12 46.92 37.55 43.60 0.00 

% Difference 20.16 27.69 15.23 24.31 0.00 

 

C.14 17.5 kHz, 2500 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

2:48 P.M. 

10/1/2009 2:48 

P.M. 

10/1/2009 

2:48 P.M. 

10/1/2009 2:48 

P.M. 

10/1/2009 2:51 

P.M. 

Frequency (Hz) 17500 

Bit Rate (bps) 2500 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 17.97 21.53 12.45 21.39 6.59 

2 18.26 21.48 12.60 21.44 6.59 

3 18.26 21.39 12.60 21.29 6.40 

4 18.12 21.29 12.55 21.29 6.59 

5 18.16 21.48 12.55 21.39 6.59 

6 18.12 21.39 12.50 21.29 6.59 
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7 18.07 21.34 12.50 21.19 5.52 

8 18.16 21.39 12.50 21.34 6.59 

9 18.16 21.44 12.55 21.39 6.59 

10 18.12 21.39 12.45 21.19 6.59 

11 18.12 21.34 12.45 21.24 6.59 

12 18.12 21.29 12.45 21.14 6.59 

13 18.07 21.19 12.55 21.24 6.59 

14 18.12 21.48 12.40 21.24 6.59 

15 18.12 21.29 12.45 21.29 6.59 

16 18.07 21.24 12.45 21.14 6.54 

17 18.12 21.34 12.45 21.19 6.25 

18 18.07 21.34 12.45 21.19 4.44 

19 18.02 21.24 12.40 21.14 2.05 

20 18.07 21.19 12.45 20.95 1.61 

21 18.07 21.44 12.45 21.34 0.68 

22 17.92 21.19 12.45 21.19 1.03 

23 17.87 21.19 12.40 21.00 1.27 

24 17.97 21.29 12.40 21.14 2.29 

25 17.87 21.19 12.40 21.19 15.09 

26 17.97 21.14 12.40 21.09 4.88 

27 17.97 21.09 12.30 21.09 6.40 

28 17.63 20.95 12.35 20.95 6.59 

29 17.92 21.00 12.40 20.85 6.59 

30 17.82 21.04 12.40 20.85 6.59 

31 17.87 20.90 12.40 20.90 6.59 

32 18.02 21.04 12.40 20.70 6.59 

33 17.77 21.00 12.35 20.90 6.59 

34 17.72 20.95 12.35 21.00 6.54 

35 17.68 20.90 12.40 20.70 6.59 

36 17.87 20.90 12.30 20.70 6.59 

37 17.97 20.90 12.30 20.75 6.59 

38 17.77 20.85 12.30 20.70 6.45 

39 17.77 21.04 12.35 20.80 6.30 

40 17.82 20.85 12.35 20.61 5.91 

41 17.77 20.85 12.30 20.70 5.62 

42 17.68 20.90 12.30 20.70 6.15 

43 17.68 20.75 12.35 20.56 6.20 

44 17.92 20.70 12.26 20.51 6.45 

45 17.92 20.70 12.35 20.41 6.40 

46 17.68 20.80 12.35 20.61 6.05 

47 17.63 20.80 12.35 20.70 6.25 

48 17.58 20.85 12.26 20.70 6.49 

49 17.92 20.61 12.26 20.61 6.30 

50 17.72 20.65 12.40 20.41 6.54 

Average BER 17.94 21.11 12.41 20.99 5.94 

Simulated BER 21.97 25.54 15.33 24.71 0.00 

% Difference 4.03 4.43 2.92 3.72 5.94 
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C.15 17.5 kHz, 3500 bps 

Demodulation FSK (Envelope Detector) FSK (Quadrature Receiver) PSK 

 Amplitude 

Comparator Hard Limiter Default Hard Limiter 

 

Date/Time 10/1/2009 

2:53 P.M. 

10/1/2009 2:53 

P.M. 

10/1/2009 

2:53 P.M. 

10/1/2009 2:53 

P.M. 

10/1/2009 2:55 

P.M. 

Frequency (Hz) 17500 

Bit Rate (bps) 2500 

Packet Size (bits) 2048 

Test Number BER BER BER BER BER 

1 28.08 25.15 24.17 25.15 3.37 

2 27.98 25.20 24.17 25.15 2.39 

3 28.32 25.20 24.22 25.10 3.47 

4 28.03 25.20 24.17 25.05 3.22 

5 28.08 25.24 24.22 25.10 3.37 

6 28.32 25.20 24.22 25.15 2.20 

7 28.03 25.24 24.22 25.15 3.37 

8 28.13 25.24 24.22 25.10 4.00 

9 28.03 25.20 24.17 25.15 5.32 

10 28.03 25.24 24.22 25.05 5.91 

11 28.03 25.20 24.17 25.05 4.25 

12 28.03 25.10 24.17 25.10 3.81 

13 28.03 25.24 24.22 25.05 3.86 

14 28.08 25.15 24.17 25.15 4.54 

15 28.08 25.24 24.17 25.05 4.15 

16 28.03 25.24 24.17 25.10 4.69 

17 28.03 25.20 24.17 25.15 4.98 

18 28.03 25.24 24.22 25.10 4.69 

19 28.03 25.20 24.17 25.15 4.20 

20 28.03 25.20 24.17 25.10 4.20 

21 28.03 25.20 24.17 25.05 4.39 

22 28.08 25.24 24.17 25.10 3.96 

23 28.13 25.20 24.17 25.10 3.96 

24 28.13 25.15 24.17 25.05 4.30 

25 28.03 25.24 24.17 25.05 4.69 

26 28.13 25.24 24.17 25.10 3.96 

27 28.13 25.24 24.17 25.10 3.66 

28 28.13 25.15 24.17 25.10 3.32 

29 28.08 25.20 24.17 25.05 3.22 

30 28.13 25.20 24.17 25.10 2.88 

31 28.08 25.20 24.17 25.10 2.59 

32 28.08 25.20 24.17 25.05 2.29 

33 28.13 25.15 24.17 25.10 1.90 

34 28.13 25.20 24.17 25.05 1.76 

35 28.08 25.15 24.17 25.05 1.66 

36 28.17 25.15 24.17 25.10 1.66 

37 28.03 25.20 24.17 25.10 1.71 

38 28.13 25.15 24.17 25.10 1.71 

39 28.17 25.20 24.17 25.10 1.76 
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40 28.08 25.20 24.17 25.05 1.76 

41 28.13 25.20 24.17 25.10 1.90 

42 28.17 25.15 24.17 25.10 2.34 

43 28.13 25.20 24.17 25.10 2.39 

44 28.17 25.15 24.17 25.10 2.54 

45 28.17 25.20 24.17 25.10 2.93 

46 28.13 25.20 24.17 25.10 2.15 

47 28.13 25.20 24.17 25.10 2.44 

48 28.13 25.20 24.17 25.10 2.29 

49 28.13 25.20 24.17 25.10 2.34 

50 28.08 25.20 24.17 25.10 2.64 

Average BER 28.10 25.20 24.18 25.10 3.22 

Simulated BER 28.61 25.29 24.22 25.24 3.22 

% Difference 0.51 0.09 0.04 0.15 0.00 



216 
 

 
 

Appendix D  

Source Code for Chapter 4 

D.1 Tunnel Relay Application 

/** 

 *  Author: Brian Borowski 

 *  Date created: 04/07/2009 

 *  Date last modified: 04/19/2010 

 *  Relays datagrams from the OS arriving at the tun device to the UDP port 

 *  connected to the Java modem, and vice-versa. 

 */ 

 

#include "util.h" 

 

#include <arpa/inet.h> 

#include <ctype.h> 

#include <errno.h> 

#include <fcntl.h> 

#include <getopt.h> 

#include <linux/if_tun.h> 

#include <net/if.h> 

#include <stdio.h> 

#include <stdint.h> 

#include <stdlib.h> 

#include <string.h> 

#include <sys/ioctl.h> 

#include <sys/socket.h> 

#include <sys/time.h> 

#include <time.h> 

#include <unistd.h> 

 

/* Globals */ 

int is_client, mtu, peer_port, peer_sock, sock, this_port; 

short tun_number; 

char *dev_ip_address, *ip_address; 

struct sockaddr_in serv_addr, peer_addr; 

time_t t1, t2; 

 

/* Probe for tun interface availability. */ 

int probe_tun(int print_to_stderr) { 

    int fd; 

 

    if ((fd = open("/dev/net/tun", O_RDWR)) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, "Error: Cannot open '/dev/net/tun'. " 

                            "Is the tun kernel module loaded?\n"); 

        } 

        return -1; 

    } 

    close(fd); 

    return 0; 

} 

 

/* Delete tun device. */ 

int del_dev_tun(int fd, int print_to_stderr) { 
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    if (ioctl(fd, TUNSETPERSIST, 0) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, "Error: Cannot delete tun device: %s\n", 

                    strerror(errno)); 

        } 

        return -1; 

    } 

    close(fd); 

    return 0; 

} 

 

/* Allocate and configure tun device. */ 

int tun_alloc(int *fd, 

              char *tun_dev, 

              int tun_dev_size, 

              int MTU, 

              int print_to_stderr) { 

    int tmp_fd, sock_opts; 

    struct ifreq ifr_tun; 

    struct sockaddr_in addr; 

 

    /* Set up tunnel device */ 

    memset(&ifr_tun, 0, sizeof(ifr_tun)); 

 

    ifr_tun.ifr_flags = IFF_TUN | IFF_NO_PI; 

    strncpy(ifr_tun.ifr_name, tun_dev, IFNAMSIZ); 

 

    if ((*fd = open("/dev/net/tun", O_RDWR)) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, 

                    "Error: Cannot create tun device '/dev/net/tun': %s\n", 

                    strerror(errno)); 

        } 

        return -1; 

    } 

 

    if ((ioctl(*fd, TUNSETIFF, (void *)&ifr_tun)) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, 

                    "Error: Cannot create tun device (TUNSETIFF): %s\n", 

                    strerror(errno)); 

        } 

        close(*fd); 

        return -1; 

    } 

 

    if (ioctl(*fd, TUNSETPERSIST, 1) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, 

                    "Error: Cannot create tun device (TUNSETPERSIST): %s\n", 

                    strerror(errno)); 

        } 

        close(*fd); 

        return -1; 

    } 

 

    if ((tmp_fd = socket(PF_INET, SOCK_DGRAM, 0)) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, 

                    "Error: Cannot can't create tun device (UDP socket): %s\n", 
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                    strerror(errno)); 

        } 

        del_dev_tun(*fd, 1); 

        return -1; 

    } 

 

    /* Set IP of this end point of tunnel */ 

    memset(&addr, 0, sizeof(addr)); 

    addr.sin_addr.s_addr = inet_addr(dev_ip_address); 

    addr.sin_family = AF_INET; 

    memcpy(&ifr_tun.ifr_addr, &addr, sizeof(struct sockaddr)); 

 

    if (ioctl(tmp_fd, SIOCSIFADDR, &ifr_tun) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, 

                    "Error: Cannot create tun device (SIOCSIFADDR): %s\n", 

                    strerror(errno)); 

        } 

        del_dev_tun(*fd, 1); 

        close(tmp_fd); 

        return -1; 

    } 

 

    if (ioctl(tmp_fd, SIOCGIFINDEX, &ifr_tun) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, 

                    "Error: Cannot create tun device (SIOCGIFINDEX): %s\n", 

                    strerror(errno)); 

        } 

        del_dev_tun(*fd, 1); 

        close(tmp_fd); 

        return -1; 

    } 

 

    if (ioctl(tmp_fd, SIOCGIFFLAGS, &ifr_tun) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, 

                    "Error: Cannot create tun device (SIOCGIFFLAGS): %s\n", 

                    strerror(errno)); 

        } 

        del_dev_tun(*fd, 1); 

        close(tmp_fd); 

        return -1; 

    } 

 

    ifr_tun.ifr_flags |= (IFF_UP | IFF_RUNNING); 

 

    if (ioctl(tmp_fd, SIOCSIFFLAGS, &ifr_tun) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, 

                    "Error: Cannot create tun device (SIOCSIFFLAGS): %s\n", 

                    strerror(errno)); 

        } 

        del_dev_tun(*fd, 1); 

        close(tmp_fd); 

        return -1; 

    } 

 

    /* Set MTU */ 

    ifr_tun.ifr_mtu = MTU; 
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    if (ioctl(tmp_fd, SIOCSIFMTU, &ifr_tun) < 0) { 

        if (print_to_stderr) { 

            fprintf(stderr, 

                    "Error: Cannot create tun device (SIOCGIFMTU): %s\n", 

                    strerror(errno)); 

        } 

        del_dev_tun(*fd, 1); 

        close(tmp_fd); 

        return -1; 

    } 

 

    /* Make tun socket non blocking */ 

    sock_opts = fcntl(*fd, F_GETFL, 0); 

    fcntl(*fd, F_SETFL, sock_opts | O_NONBLOCK); 

 

    strncpy(tun_dev, ifr_tun.ifr_name, tun_dev_size - 1); 

    close(tmp_fd); 

 

    return 0; 

} 

 

void print_datagram(uint8_t *str, int num_bytes) { 

    int index = 0, lines = 0; 

 

    if (str) { 

        if (num_bytes > 104)  { 

            fprintf(stderr, " "); 

        } 

        for (index = 0; index < 8; index++) { 

            fprintf(stderr, "    %2d", index); 

        } 

        if (num_bytes < 104)  { 

            fprintf(stderr, "\n%02d:", lines); 

        } else { 

            fprintf(stderr, "\n %02d:", lines); 

        } 

        for (index = 0; index < num_bytes; index++) { 

            fprintf(stderr, " %02x", str[index]); 

            if (isprint(str[index])) { 

                fprintf(stderr, "(%c)", str[index]); 

            } else { 

                fprintf(stderr, "( )"); 

            } 

            if ((index + 1) % 8 == 0 && (index + 1) < num_bytes) { 

                lines += 8; 

                if (num_bytes <= 104 || index >= 103) { 

                    fprintf(stderr, "\n%02d:", lines); 

                } else { 

                    fprintf(stderr, "\n %02d:", lines); 

                } 

            } 

        } 

        fprintf(stderr, "\n"); 

    } 

    return; 

} 

 

void print_help(FILE *descriptor, char *executable_name) { 

    fprintf(descriptor, 

            "Usage: %s\n" 
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            "   -d <tunnel device IP address>\n" 

            "   -n <tunnel number>\n" 

            "   -b <port of local binding>\n" 

            "   -i <IP address of link layer implementation>\n" 

            "   -p <port of link layer implementation>\n" 

            "   -m <MTU in bytes>\n", 

            executable_name); 

} 

 

void parse_args(int argc, char *argv[]) { 

    char c; 

    char *dev_ip_str = NULL, 

         *ip_str = NULL, 

         *number_str = NULL, 

         *mtu_str = NULL, 

         *link_port_str = NULL, 

         *local_port_str = NULL, 

         *executable_name = argv[0]; 

 

    /* Do not allow getopt to display messsages automatically. */ 

    opterr = 0; 

    /* Parse command line arguments with getopt. */ 

    while ((c = getopt(argc, argv, "b:d:i:m:n:p:h")) != -1) { 

        switch(c) { 

            case 'b': 

                local_port_str = optarg; 

                break; 

            case 'd': 

                dev_ip_str = optarg; 

                break; 

            case 'i': 

                ip_str = optarg; 

                break; 

            case 'm': 

                mtu_str = optarg; 

                break; 

            case 'n': 

                number_str = optarg; 

                break; 

            case 'p': 

                link_port_str = optarg; 

                break; 

            case 'h': 

                print_help(stdout, executable_name); 

                exit(EXIT_SUCCESS); 

            case '?': 

                if (isprint(optopt)) { 

                    fprintf(stderr, "Unknown option '-%c'.\n", optopt); 

                } else { 

                    fprintf(stderr, "Unknown option character'\\x%x'.\n", 

                            optopt); 

                } 

                print_help(stderr, executable_name); 

                exit(EXIT_FAILURE); 

        } 

    } 

 

    if (number_str != NULL) { 

        if (!is_integer(number_str)) { 

            fprintf(stderr, "Error: Invalid tunnel number '%s'.\n", 
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                    number_str); 

            exit(EXIT_FAILURE); 

        } 

        tun_number = atoi(number_str); 

        if (tun_number < 0) { 

            fprintf(stderr, "Error: Tunnel number must be non-negative.\n"); 

            exit(EXIT_FAILURE); 

        } 

    } else { 

        fprintf(stderr, "Error: Tunnel number not specified.\n"); 

        exit(EXIT_FAILURE); 

    } 

 

    if (dev_ip_str != NULL) { 

        if (!is_valid_ip_addr(dev_ip_str)) { 

            fprintf(stderr, "Error: Invalid device IP address '%s'.\n", 

                    dev_ip_str); 

            exit(EXIT_FAILURE); 

        } 

        dev_ip_address = strdup(dev_ip_str); 

    } else { 

        fprintf(stderr, "Error: Device IP address not specified.\n"); 

        exit(EXIT_FAILURE); 

    } 

 

    if (local_port_str != NULL) { 

        if (!is_integer(local_port_str)) { 

            fprintf(stderr, "Error: Invalid port number '%s'.\n", 

                    local_port_str); 

            exit(EXIT_FAILURE); 

        } 

        this_port = atoi(local_port_str); 

        if (this_port < 1024 || this_port > 65535) { 

            fprintf(stderr, "Error: Port %d not in range 1024..65535.\n", 

                    this_port); 

            exit(EXIT_FAILURE); 

        } 

    } else { 

        fprintf(stderr, "Error: Local port number not specified.\n"); 

        exit(EXIT_FAILURE); 

    } 

 

    if (ip_str != NULL) { 

        if (!is_valid_ip_addr(ip_str)) { 

            fprintf(stderr, "Error: Invalid IP address '%s'.\n", ip_str); 

            exit(EXIT_FAILURE); 

        } 

        ip_address = strdup(ip_str); 

    } else { 

        fprintf(stderr, "Error: Link layer IP address not specified.\n"); 

        exit(EXIT_FAILURE); 

    } 

 

    if (link_port_str != NULL) { 

        if (!is_integer(link_port_str)) { 

            fprintf(stderr, "Error: Invalid port number '%s'.\n", 

                    link_port_str); 

            exit(EXIT_FAILURE); 

        } 

        peer_port = atoi(link_port_str); 
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        if (peer_port < 1024 || peer_port > 65535) { 

            fprintf(stderr, "Error: Port %d not in range 1024..65535.\n", 

                    peer_port); 

            exit(EXIT_FAILURE); 

        } 

    } else { 

        fprintf(stderr, "Error: Link layer port number not specified.\n"); 

        exit(EXIT_FAILURE); 

    } 

 

    if (mtu_str != NULL) { 

        if (!is_integer(mtu_str)) { 

            fprintf(stderr, "Error: Invalid MTU '%s'.\n", mtu_str); 

            exit(EXIT_FAILURE); 

        } 

        mtu = atoi(mtu_str); 

        if (mtu < 1) { 

            fprintf(stderr, "Error: MTU must be a positive number.\n"); 

            exit(EXIT_FAILURE); 

        } 

    } else { 

        fprintf(stderr, "Error: MTU not specified.\n"); 

        exit(EXIT_FAILURE); 

    } 

} 

 

void print_params() { 

    printf("Using tunnel parameters:\n"); 

    printf("  Tunnel #          : %d\n", tun_number); 

    printf("  Tunnel IP Address : %s\n", dev_ip_address); 

    printf("  Local Port #      : %d\n", this_port); 

    printf("  MTU (bytes)       : %d\n", mtu); 

    printf("  Peer IP Address   : %s\n", ip_address); 

    printf("  Peer Port #       : %d\n", peer_port); 

} 

 

void analyze_datagram(uint8_t *datagram) { 

    uint8_t protocol; 

    uint16_t value; 

    int i; 

 

    protocol = datagram[9]; 

    printf("Datagram Contents\n"); 

    printf("  Protocol: %d ", protocol); 

    if (protocol == 6) { 

        printf("(TCP)\n"); 

    } else if (protocol == 17) { 

        printf("(UDP)\n"); 

    } 

    printf("  Source address: "); 

    for (i = 12; i <= 15; i++) { 

        printf("%d", datagram[i]); 

        if (i != 15) { 

            printf("."); 

        } else { 

            printf("\n"); 

        } 

    } 

    printf("  Destination address: "); 

    for (i = 16; i <= 19; i++) { 
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        printf("%d", datagram[i]); 

        if (i != 19) { 

            printf("."); 

        } else { 

            printf("\n"); 

        } 

    } 

    value = (datagram[20] << 8) | datagram[21]; 

    printf("  Source port: %d\n", value); 

    value = (datagram[22] << 8) | datagram[23]; 

    printf("  Destination port: %d\n", value); 

    if (protocol == 17) { 

        value = (datagram[24] << 8) | datagram[25]; 

        printf("  Length: %d\n", value); 

        value = (datagram[26] << 8) | datagram[27]; 

        printf("  Checksum: %d\n", value); 

    } else if (protocol == 6) { 

        value = (datagram[33] & 0x20) >> 5; 

        printf("  URG: %d, ", value); 

        value = (datagram[33] & 0x10) >> 4; 

        printf("ACK: %d, ", value); 

        value = (datagram[33] & 0x8) >> 3; 

        printf("PSH: %d, ", value); 

        value = (datagram[33] & 0x4) >> 2; 

        printf("RST: %d, ", value); 

        value = (datagram[33] & 0x2) >> 1; 

        printf("SYN: %d, ", value); 

        value = (datagram[33] & 0x1); 

        printf("FIN: %d\n", value); 

    } 

} 

 

void config_tun_link() { 

    if ((sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) { 

        perror("Error"); 

        exit(EXIT_FAILURE); 

    } 

    memset(&serv_addr, 0, sizeof(serv_addr)); 

    serv_addr.sin_family = AF_INET; 

    serv_addr.sin_port = htons(this_port); 

    serv_addr.sin_addr.s_addr = htonl(INADDR_ANY); 

    if (bind(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) { 

        perror("Error"); 

        exit(EXIT_FAILURE); 

    } 

    memset(&peer_addr, 0, sizeof(peer_addr)); 

    peer_addr.sin_family = AF_INET; 

    peer_addr.sin_port = htons(peer_port); 

    peer_addr.sin_addr.s_addr = inet_addr(ip_address); 

} 

 

int main(int argc, char *argv[]) { 

    char c, tun_dev[IFNAMSIZ]; 

    fd_set socket_set; 

    int bytes_read, bytes_sent, max_fd, return_code, running, timeout, tun_fd; 

    socklen_t peer_len; 

    struct timeval select_timeout; 

    uint8_t *buffer; 

 

    parse_args(argc, argv); 
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    print_params(); 

    config_tun_link(); 

 

    sprintf(tun_dev, "tun%d", tun_number); 

    timeout = 5; 

    if ((return_code = probe_tun(1)) < 0) { 

        return 1; 

    } 

    printf("Status: tun file descriptor probed successfully.\n"); 

    if ((return_code = tun_alloc(&tun_fd, tun_dev, IFNAMSIZ, mtu, 1)) < 0) { 

        return 1; 

    } 

    printf("Status: '%s' allocated successfully to fd %d.\n", tun_dev, tun_fd); 

    max_fd = max(max(STDIN_FILENO, tun_fd), sock); 

 

    if ((buffer = (uint8_t*)malloc(mtu * sizeof(uint8_t))) == NULL) { 

        fprintf(stderr, "Error: Cannot allocate memory for buffer.\n"); 

        del_dev_tun(tun_fd, 1); 

    } 

 

    printf("Starting server. Type 'q' + ENTER to quit...\n"); 

    running = 1; 

    while (running) { 

        FD_ZERO(&socket_set); 

        FD_SET(STDIN_FILENO, &socket_set); 

        FD_SET(tun_fd, &socket_set); 

        FD_SET(sock, &socket_set); 

 

        select_timeout.tv_sec = timeout; 

        select_timeout.tv_usec = 0; 

 

        if (select(max_fd + 1, &socket_set, NULL, NULL, NULL) == 0) { 

            printf("No activity for %d seconds. Server still alive.\n", 

                   timeout); 

        } else if (FD_ISSET(tun_fd, &socket_set)) { 

            t2 = time(NULL); 

            printf("Elapsed time since last datagram: %.2f seconds\n", 

                   difftime(t2, t1)); 

            t1 = t2; 

            printf("Received data from %s.\n", tun_dev); 

            if ((bytes_read = read(tun_fd, buffer, mtu)) < 0) { 

                fprintf(stderr, "Error: Cannot read from %s: ", tun_dev); 

                perror(""); 

                continue; 

            } 

            if (bytes_read > 0) { 

                print_datagram(buffer, bytes_read); 

                analyze_datagram(buffer); 

                if ((bytes_sent = sendto(sock, 

                                         buffer, 

                                         bytes_read, 

                                         0, 

                                         (struct sockaddr *)&peer_addr, 

                                         sizeof(peer_addr))) != bytes_read) { 

                    fprintf(stderr, "Error: Sent %d bytes instead of %d.\n", 

                            bytes_sent, bytes_read); 

                } else { 

                    fprintf(stderr, "Status: Sent %d bytes.\n", bytes_sent); 

                } 

            } 
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        } else if (FD_ISSET(sock, &socket_set)) { 

            printf("Received data from UDP socket.\n"); 

            peer_len = sizeof(peer_addr); 

            if ((bytes_read = recvfrom(sock, 

                                       buffer, 

                                       mtu, 

                                       0, 

                                       (struct sockaddr *)&peer_addr, 

                                       &peer_len)) < 0) { 

                fprintf(stderr, "Error: Cannot read from UDP socket: "); 

                perror(""); 

                continue; 

            } 

            if (bytes_read > 0) { 

                printf("Handling connection with %s.\n", 

                       inet_ntoa(peer_addr.sin_addr)); 

                print_datagram(buffer, bytes_read); 

                analyze_datagram(buffer); 

                if ((bytes_sent = write(tun_fd, 

                                        buffer, 

                                        bytes_read)) != bytes_read) { 

                    fprintf(stderr, "Error: Sent %d bytes instead of %d.\n", 

                            bytes_sent, bytes_read); 

                } else { 

                    fprintf(stderr, "Status: Sent %d bytes.\n", bytes_sent); 

                } 

            } 

        } else if (FD_ISSET(STDIN_FILENO, &socket_set)) { 

            c = getchar(); 

            if (c == 'q') { 

                printf("Shutting down server.\n"); 

                running = 0; 

            } 

        } 

    } 

    del_dev_tun(tun_fd, 1); 

    free(buffer); 

    return 0; 

} 

 

 

D.2 util.h for Tunnel Relay Application 

#ifndef UTIL_H_ 

#define UTIL_H_ 

 

/** 

 * Definitions 

 */ 

#define ERR_TOO_MANY_DOTS       -1 

#define ERR_TOO_FEW_DOTS        -2 

#define ERR_OCTET_TOO_LONG      -4 

#define ERR_OCTET_OUT_OF_RANGE  -8 

#define ERR_OCTET_NOT_INTEGER  -16 

 

#define max(A, B) ((A) > (B) ? (A) : (B)) 

 

/** 

 * Function prototypes 
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 */ 

int is_valid_ip_addr(char *ipAddressPtr); 

int is_integer(char *inputPtr); 

 

#endif 

 

 

D.3 util.c for Tunnel Relay Application 

#include "util.h" 

 

#include <ctype.h> 

#include <stdlib.h> 

#include <string.h> 

 

/** 

 * Returns 0 if the character array represents a valid IPv4 address; otherwise, 

 * returns a non-negative error code. 

 */ 

int is_valid_ip_addr(char *ipAddressPtr) { 

    unsigned char dotPositions[4]; 

    char buffer[3]; 

    unsigned int j; 

    int octet; 

    int length; 

    int i, k; 

    int index; 

 

    length = strlen(ipAddressPtr); 

    index = 0; 

    for (i = 0; i < length; i++) { 

        if (ipAddressPtr[i] == '.') { 

            if (index < 3) { 

                dotPositions[index++] = i; 

            } else { 

                return ERR_TOO_MANY_DOTS; 

            } 

        } 

    } 

    if (index < 3) { 

        return ERR_TOO_FEW_DOTS; 

    } 

    dotPositions[3] = length; 

    index = 0; 

    for (i = 0; i < 4; i++) { 

        k = 0; 

        for (j = index; j < dotPositions[i]; j++) { 

            if (k < 3) { 

                buffer[k++] = ipAddressPtr[j]; 

            } else { 

                return ERR_OCTET_TOO_LONG; 

            } 

        } 

        buffer[k] = '\0'; 

        index = j + 1; 

        if (strlen(buffer) == 1 && buffer[0] == '0') { 

            continue; 

        } 

        if (is_integer(buffer)) { 
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            octet = atoi(buffer); 

            if (octet <= 0 || octet > 255) { 

                return ERR_OCTET_OUT_OF_RANGE; 

            } 

        } else { 

            return ERR_OCTET_NOT_INTEGER; 

        } 

    } 

    return 1; 

} 

 

/** 

 * Determines whether or not a character array represents an integer. 

 */ 

int is_integer(char *inputPtr) { 

    int start, i; 

 

    if (inputPtr[0] == '-') { 

        if (inputPtr[1] == '\0') { 

            return 0; 

        } else { 

            start = 1; 

        } 

    } else { 

        start = 0; 

    } 

    for (i = start; inputPtr[i] != '\0'; i++) { 

        if (!isdigit(inputPtr[i])) { 

            return 0; 

        } 

    } 

    return 1; 

} 

 

 

D.4 SignalProcessor.java for Softwater Modem 

/** 

 * Author: Brian Borowski 

 * Date created: 06/23/2009 

 * Date last modified: 06/23/2009 

 * Computes FFT, cross-correlation, convolution, and rms amplitude. 

 * Based on W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 

 *     Numerical Recipes: The Art of Scientific Computing, Third Edition, 

 *     Cambridge University Press: Cambridge, 2007. 

 */ 

 

public final class SignalProcessor { 

 

    public static int IFFT = -1, FFT = 1, DECONVOLVE = -1, CONVOLVE = 1; 

    private float[] ans, temp; 

    private int fftPoints; 

 

    public SignalProcessor(int length1, int length2) { 

        int max = Math.max(length1, length2), 

            upperBound = (max << 1) - 1; 

        fftPoints = 2; 

        while (fftPoints <= upperBound) { 

            fftPoints <<= 1; 
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        } 

        ans = new float[fftPoints]; 

        temp = new float[fftPoints]; 

    } 

 

    public static void realft(float[] data, int n, int isign) { 

        int i, i1, i2, i3, i4, np3; 

        float c1 = 0.5f, c2, h1r, h1i, h2r, h2i; 

        double wr, wi, wpr, wpi, wtemp, theta; 

 

        theta = 3.141592653589793 / (double)(n >> 1); 

        if (isign == FFT) { 

            c2 = -0.5f; 

            four1(data, n >> 1, 1); 

        } else { 

            c2 = 0.5f; 

            theta = -theta; 

        } 

        wtemp = Math.sin(0.5 * theta); 

        wpr = -2.0 * wtemp * wtemp; 

        wpi = Math.sin(theta); 

        wr = 1.0 + wpr; 

        wi = wpi; 

        np3 = n + 3; 

        int upperBound = n >> 2; 

        for (i = 2; i <= upperBound; i++) { 

            i2 = 1 + (i1 = i + i); 

            i4 = 1 + (i3 = n - i1); 

            h1r = c1 * (data[i1] + data[i3]); 

            h1i = c1 * (data[i2] - data[i4]); 

            h2r = -c2 * (data[i2] + data[i4]); 

            h2i = c2 * (data[i1] - data[i3]); 

            data[i1] = (float)(h1r + wr * h2r - wi * h2i); 

            data[i2] = (float)(h1i + wr * h2i + wi * h2r); 

            data[i3] = (float)(h1r - wr * h2r + wi * h2i); 

            data[i4] = (float)(-h1i + wr * h2i + wi * h2r); 

            wr = (wtemp = wr) * wpr - wi * wpi + wr; 

            wi = wi * wpr + wtemp * wpi + wi; 

        } 

        if (isign == FFT) { 

            data[0] = (h1r = data[0]) + data[1]; 

            data[1] = h1r - data[1]; 

        } else { 

            data[0] = c1 * ((h1r = data[0]) + data[1]); 

            data[1] = c1 * (h1r - data[1]); 

            four1(data, n >> 1, -1); 

        } 

    } 

 

    public float[] crossCorrelate(float[] d1, float[] d2) { 

        int no2, i, 

            len1 = d1.length, 

            len2 = d2.length, 

            n = fftPoints; 

 

        // Make copies of the data so that the original samples remain 

        // preserved. 

        System.arraycopy(d1, 0, ans, 0, len1); 

        System.arraycopy(d2, 0, temp, 0, len2); 

        // Pad with zeros. 
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        for (i = len1; i < n; i++) { 

            ans[i] = 0.0f; 

        } 

        for (i = len2; i < n; i++) { 

            temp[i] = 0.0f; 

        } 

        realft(ans, n, FFT); 

        realft(temp, n, FFT); 

        no2 = n >> 1; 

        for (i = 2; i < n; i+=2) { 

            int iPlusOne = i + 1; 

            float ansIPlusOne = ans[iPlusOne], 

                  ansI = ans[i], 

                  tempIPlusOne = temp[iPlusOne], 

                  tempI = temp[i]; 

            ans[i] = (ansI * tempI + ansIPlusOne * tempIPlusOne) / no2; 

            ans[iPlusOne] = (ansIPlusOne * tempI - ansI * tempIPlusOne) / no2; 

        } 

        ans[0] = ans[0] * temp[0]/no2; 

        ans[1] = ans[1] * temp[1]/no2; 

        realft(ans, n, IFFT); 

        return ans; 

    } 

 

    public float[] convolve(float[] data, float[] response, int isign) { 

        int no2, i, 

            len1 = data.length, 

            len2 = response.length, 

            n = fftPoints; 

        float val, max = 0.0f; 

        short maxShort = Short.MAX_VALUE; 

 

        // Make copies of the data so that the original samples remain 

        // preserved. 

        System.arraycopy(data, 0, ans, 0, len1); 

        System.arraycopy(response, 0, temp, 0, len2); 

        // Pad with zeros. 

        for (i = len1; i < n; i++) { 

            ans[i] = 0.0f; 

        } 

        for (i = len2; i < n; i++) { 

            temp[i] = 0.0f; 

        } 

        realft(ans, n, FFT); 

        realft(temp, n, FFT); 

        no2 = n >> 1; 

        if (isign == CONVOLVE) { 

            for (i = 2; i < n; i+=2) { 

                int iPlusOne = i + 1; 

                float ansIPlusOne = ans[iPlusOne], 

                      ansI = ans[i], 

                      tempIPlusOne = temp[iPlusOne], 

                      tempI = temp[i]; 

                ans[i] = (ansI * tempI - ansIPlusOne * tempIPlusOne) / no2; 

                ans[iPlusOne] = 

                    (ansIPlusOne * tempI + ansI * tempIPlusOne) / no2; 

            } 

            ans[0] = ans[0] * temp[0]/no2; 

            ans[1] = ans[1] * temp[1]/no2; 

        } else if (isign == DECONVOLVE) { 
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            // TODO - but not needed in project 

        } else { 

            return null; 

        } 

        realft(ans, n, IFFT); 

        for (i = n - 1; i >= 0; i--) { 

            val = ans[i]; 

            val = val > 0 ? val : -val; 

            if (val > max) { 

                max = val; 

            } 

        } 

        for (i = n - 1; i >= 0; i--) { 

            ans[i] = ans[i] / max * maxShort; 

        } 

        return ans; 

    } 

 

    public static float computeRmsAmplitude(short[] samples, 

                                            int offset, 

                                            int howMany) { 

        long rms = 0; 

        int upperBound = offset + howMany; 

        for (int i = offset; i < upperBound; i++) { 

            short val = samples[i]; 

            rms += (val * val); 

        } 

        return (float)Math.sqrt((float)rms / howMany); 

    } 

 

    public static float indexToFrequency(int numSamples, 

                                         int index, 

                                         int samplingRate) { 

        if (index >= numSamples) return 0.0f; 

        if (index <= numSamples/2) { 

            return (float)index * samplingRate / (float)numSamples; 

        } 

        return (float)-(numSamples - index * samplingRate) / (float)numSamples; 

    } 

 

    private static void four1(float[] data, int n, int isign) { 

        int nn, mmax, m, j, istep, i; 

        double wtemp, wr, wpr, wpi, wi, theta; 

        float tempr, tempi; 

 

        if (n < 2 || (n & (n-1)) != 0) { 

            return; 

        } 

        nn = n << 1; 

        j = 1; 

        for (i = 1; i < nn; i+=2) { 

            if (j > i) { 

                int jMinusOne = j - 1, 

                    iMinusOne = i - 1; 

                tempr = data[jMinusOne]; 

                data[jMinusOne] = data[iMinusOne]; 

                data[iMinusOne] = tempr; 

                tempr = data[j]; 

                data[j] = data[i]; 

                data[i] = tempr; 
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            } 

            m = n; 

            while (m >= 2 && j > m) { 

                j -= m; 

                m >>= 1; 

            } 

            j += m; 

        } 

        mmax = 2; 

        while (nn > mmax) { 

            istep = mmax << 1; 

            theta = isign * (6.28318530717959 / mmax); 

            wtemp = Math.sin(0.5 * theta); 

            wpr = -2.0 * wtemp * wtemp; 

            wpi = Math.sin(theta); 

            wr = 1.0; 

            wi = 0.0; 

            for (m = 1; m < mmax; m+=2) { 

                for (i = m; i <= nn; i+=istep) { 

                    j = i + mmax; 

                    int jMinusOne = j - 1, 

                        iMinusOne = i - 1; 

                    float dataJMinusOne = data[jMinusOne], 

                          dataJ = data[j]; 

                    tempr = (float)(wr * dataJMinusOne - wi * dataJ); 

                    tempi = (float)(wr * dataJ + wi * dataJMinusOne); 

                    data[jMinusOne] = data[iMinusOne] - tempr; 

                    data[j] = data[i] - tempi; 

                    data[iMinusOne] += tempr; 

                    data[i] += tempi; 

                } 

                wr = (wtemp=wr) * wpr - wi * wpi + wr; 

                wi = wi * wpr + wtemp * wpi + wi; 

            } 

            mmax = istep; 

        } 

    } 

} 

 

 

D.5 LevinsonDurbin.java for Softwater Modem 

/** 

 * Author: Brian Borowski 

 * Date created: 06/26/2009 

 * Date last modified: 06/26/2009 

 * Inverts an impulse response in the time domain. 

 * Java port based on 'http://www.musicdsp.org/showone.php?id=188' 

 * Original author: Bob Cain, May 1, 2001 arcane[AT]arcanemethods[DOT]com 

 */ 

 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.util.Vector; 
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public final class LevinsonDurbin { 

 

    private final float[] b, hinv, m, samples; 

    private final float[][] a; 

    private final int length; 

    private final SignalProcessor signalProcesor; 

 

    public LevinsonDurbin(final int length) { 

        this.length = length; 

        final int numberOfSamples = length << 1; 

        samples = new float[numberOfSamples]; 

        b       = new float[length]; 

        m       = new float[length]; 

        hinv    = new float[length]; 

        a       = new float[length + 1][2]; 

        signalProcesor = new SignalProcessor(numberOfSamples, numberOfSamples); 

    } 

 

    public float[] getInverse(final float[] impulseResponse, final int delay) { 

        for (int i = length - 1; i >= 0; --i) { 

            samples[i] = impulseResponse[i]; 

        } 

        final int upperBound = length << 1; 

        for (int i = length; i < upperBound; ++i) { 

            samples[i] = 0.0f; 

        } 

        final float[] corr = signalProcesor.crossCorrelate(samples, samples); 

        for (int i = length - 1; i >= 0; --i) { 

            m[i] = corr[i]; 

        } 

        for (int i = delay; i >= 0; --i) { 

            b[i] = samples[i]; 

        } 

        for (int i = delay + 1; i < length; ++i) { 

            b[i] = 0; 

        } 

        return solveToeplitz(m, b); 

    } 

 

    private float[] solveToeplitz(final float[] r, final float[] q) { 

        final int n = length; 

        for (int row = n; row >= 0; --row) { 

            for (int col = 1; col >= 0; --col) { 

                a[row][col] = 0.0f; 

            } 

        } 

        for (int row = n - 1; row >= 0; --row) { 

            hinv[row] = 0.0f; 

        } 

        a[0][0] = 1.0f; 

 

        hinv[0] = q[0]/r[0]; 

 

        float alpha = r[0]; 

        int c = 0, 

            d = 1; 

 

        for (int k = 1; k < n; ++k) { 

            a[k][c] = 0; 

            a[0][d] = 1.0f; 
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            float beta = 0.0f; 

            for (int j = 1; j <= k; ++j) { 

                beta += r[k+1-j]*a[j-1][c]; 

            } 

            beta /= alpha; 

            for (int j = 1; j <= k; ++j) { 

                a[j][d] = a[j][c] - beta*a[k-j][c]; 

            } 

            alpha *= (1 - beta*beta); 

            hinv[k] = q[k]; 

            for (int j = 1; j <= k; ++j) { 

                hinv[k] -= r[k+1-j]*hinv[j-1]; 

            } 

            hinv[k] /= alpha; 

            for (int j = 1; j <= k; ++j) { 

                hinv[j-1] += a[k+1-j][d]*hinv[k]; 

            } 

            int temp = c; 

            c = d; 

            d = temp; 

        } 

        return hinv; 

    } 

 

    public static void main(String[] args) { 

        if (args.length != 2) { 

            System.err.println( 

                "Usage: java LevinsonDurbin <input file> <output file>"); 

            System.exit(1); 

        } 

        Vector<Float> v = new Vector<Float>(); 

        String infile  = args[0], 

               outfile = args[1]; 

        BufferedReader in = null; 

        String str = null; 

        int line = 1; 

        try { 

            in = new BufferedReader(new FileReader(infile)); 

            while ((str = in.readLine()) != null) { 

                v.add(new Float(str)); 

                line++; 

            } 

        } catch (NumberFormatException nfe) { 

            System.err.println( 

                "LevinsonDurbin: Invalid float '" + str + "' at line " 

                + line + "."); 

            System.exit(1); 

        } catch (FileNotFoundException fnfe) { 

            System.err.println( 

                "LevinsonDurbin: File '" + infile + "' not found."); 

            System.exit(1); 

        } catch (IOException ioe) { 

            System.err.println( 

                "LevinsonDurbin: Error reading file '" + infile + "'."); 

            System.exit(1); 

        } finally { 

            try { 

                if (in != null) { 

                    in.close(); 

                } 
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            } catch (IOException ioe) { } 

        } 

        int length = v.size(); 

        float[] data = new float[length << 1]; 

        for (int i = 0; i < length; i++) { 

            data[i] = v.elementAt(i); 

        } 

        LevinsonDurbin levinsonDurbin = new LevinsonDurbin(length); 

 

        long startTime = System.currentTimeMillis(), currentTime; 

        float[] inverseIR = levinsonDurbin.getInverse(data, 0); 

        currentTime = System.currentTimeMillis(); 

        System.out.println( 

            "Computation time: " + (currentTime - startTime)/1000.0f + " s"); 

 

        BufferedWriter out = null; 

        try { 

            out = new BufferedWriter(new FileWriter(outfile)); 

            for (int i = 0; i < length; i++) { 

                out.append(Float.toString(inverseIR[i])); 

                out.newLine(); 

            } 

        } catch (IOException ioe) { 

            System.err.println( 

                "LevinsonDurbin: Error writing '" + outfile + "'."); 

        } finally { 

            try { 

                if (out != null) { 

                    out.close(); 

                } 

            } catch (IOException ioe) { } 

        } 

    } 

} 
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