
Short Paper: The Softwater Modem – A Software Modem
for Underwater Acoustic Communication

Brian Borowski and Dan Duchamp

Department of Computer Science
Stevens Institute of Technology

Castle Point on Hudson, Hoboken, NJ 07030

{bborowsk, djd}@cs.stevens.edu

ABSTRACT
The Softwater Modem is a software modem for underwater acous-

tic communication that enables users to run applications on the

familiar sockets interface without any additional hardware except

for transducers and associated amplification. A standard TCP or

UDP transport protocol runs on top of IP, which via the Linux

TUN driver, runs on top of custom datalink and PHY layers tai-

lored specifically to the underwater channel. The datalink and

PHY layers, written entirely in Java, use frequency-division mul-

tiple access (FDMA) with binary and 4-FSK (frequency shift

keying) in any frequency band supported by the computer’s sound

card and can run at any bit rate supplied by the user. The trans-

mitter sends a per-packet linear frequency modulated (LFM) chirp

signal that the receiver uses for packet synchronization as well as

channel estimation, with the option of applying impulse response

estimates to channel equalization. Frames can contain up to 255

bytes and are encoded with Reed-Solomon (R-S) codes, for which

the user can specify the number of parity bytes. The paper de-

scribes the architecture and performance of this system, which

currently demonstrates two-way communication as well as real-

time channel estimation.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Signal

processing systems; C.2 [Computer-Communication Net-

works]: Data communications

General Terms
Algorithms, Design, Experimentation, Measurement

Keywords
Underwater acoustic modem, SDR, DSP, noncoherent FSK, in-

verse filter

1. INTRODUCTION
There is no such thing as a typical underwater acoustic com-

munication channel [1]. The large variation in channel conditions

among different locations – especially the difference between

deep water and shallow water – suggest that vastly different

communication parameters (modulation technique, frequency

band, frame length, error correction methods, etc.) would be op-

timal for different locations. Existing acoustic modems are im-

plemented at least partly with custom hardware and paired with a

fixed-point or floating-point DSP [2, 3]. Such solutions typically

offer a limited choice of operating parameters. Especially in the

case of commercial products, modem parameters are often chosen

based on worst-case channel assumptions in order to maximize

the modem’s utility, necessitating a series of products, each tai-

lored to specific environments that vary in depth, link distance,

and expected severity of multipath [4]. While logical, this is an

unfortunate development because flexible, optimized communica-

tion is especially important in the bandwidth-limited underwater

environment.

Accordingly, we have built an all-software acoustic modem

for underwater operation. The only necessary hardware compo-

nents are the transducers, amplifiers, and cables. All other tasks

are performed either by software or hardware ordinarily found in

any PC-like platform; e.g., A/D conversion is performed by the

sound card. The modem is able to sense and adapt to its environ-

ment on a very short time scale. In particular, a “sounding signal”

precedes every packet and is used by the receiver to compute and

apply the channel’s inverse impulse response to the modulated

data signal that follows the sounding signal. In this way the re-

ceiver mitigates channel distortion on a packet-by-packet basis.

The modem allows the user to alter its functionality by editing a

text file containing name/value pairs. More than a dozen options

are supported, including base frequency, number of carriers, sym-

bols per second, number of parity bytes to be used within the R-S

code, and the payload size.

Besides being able to adapt to channel conditions, a software

modem offers the advantage of being far less costly than current

hardware devices – such as the Benthos 013424 LF (9-14 kHz)

omni-directional modem at $8800/pair as of April 2009 – and of

being easily configurable. Modem parameters can be selected to

match the environment, thereby avoiding worst case assumptions

and making communication more efficient.

An additional advantage of our software architecture is that it

supports TCP/IP based communication. While TCP/IP is not

optimal for the underwater channel, applications can use the popu-

lar sockets interface and run unaltered on top of our modem layer,

any number simultaneously. The effect is as if an Ethernet had

been replaced by a (much slower) acoustic channel.

2. RELATED WORK
There are several underwater acoustic modems in existence,

either as commercial products [2, 4, 5, 6] or research efforts [3, 7],

all of which make use of custom hardware to varying degrees.

The purely software defined approach to packet radio in Sound-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
WUWNet'09, November 3, 2009, Berkeley, CA, USA.

Copyright 2009 ACM. 978-1-60558-821-6

modem [8] offers several modulation techniques but did not work

well in our underwater communication experiment. With J-QAM

[9], high data rates have been achieved by using a PC sound card

with RF transmission, though the phase-coherent detection me-

thods necessary for quadrature amplitude modulation (QAM)

modulation work well only in vertical underwater acoustic chan-

nels with little multipath distortion [10]. GNU Radio [11] is

probably the largest, most flexible software defined radio (SDR)

platform to date, but it is designed for use with RF technology and

is in a constant state of change. The prototype from UCSB [12]

combines DSP techniques, hardware-software integration, and

network protocols, but operates at a fixed rate of 161 bps.

Hwang’s design [13] uses a PC sound card with MATLAB as an

SDR orthogonal frequency-division multiplexing (OFDM) com-

munication system; however, the system cannot operate in real

time. Furthermore, the code optimizations performed at UCONN

[14] have still not been able to produce a real-time DSP-based

OFDM receiver. Since each system has limitations, we focus on

the implementation of a flexible software modem that performs

well in various types of underwater acoustic channels while re-

quiring a reasonable amount of processing power, such as that

found in an average laptop PC.

3. SYSTEM ARCHITECTURE

3.1 Software architecture
The overall architecture of the system includes three layers

of user space applications. The highest layer is the application

itself, which can use either TCP or UDP. The lowest layer is the

Java application that implements the functionality of an acoustic

modem. Between the two is the tunnel relay application, which is

responsible for passing IP datagrams between the network appli-

cation and Java modem. Figure 1 depicts the overall architecture

of the system and shows how the component applications are

linked.

Figure 1: Software architecture

The tunnel relay application communicates with the Java

modem via UDP, as sockets are the only form of inter-process

communication (IPC) that works with Java. Both the tunnel relay

application and Java modem bind to the local loopback IP ad-

dress, but with different port numbers, to allow full-duplex com-

munication between the two processes. Thus, the Java modem

listens on one socket for datagrams from the tunX device that

need to be transmitted acoustically, while it sends datagrams that

have been received acoustically on the other socket where the

tunnel relay program is listening.

3.2 Associated hardware
Two laptops have been used in the development of this sys-

tem. Each has a dual-core Intel processor running at 2 GHz and 2

GB of memory. One has an ADI1981 codec running on top of the

integrated Intel high-definition audio (HDA) controller. The

sound card supports a maximum sampling rate of 48 kHz. The

other has a Conexant CX20561 codec paired with an Intel HDA

controller. This integrated sound card supports a maximum sam-

pling rate of 192 kHz. Both systems were running Ubuntu Intre-

pid 8.10, ALSA 1.0.17, and Java 1.6.0 Update 13.

4. MODEM ARCHITECTURE

Figure 2: Processing blocks within Java modem

The modem portion of the system is written entirely in Java.

It is divided into two main functions, transmit and receive, which

execute in parallel. Both functions are implemented as a series of

stages which are processed by threaded objects. Adjacent stages

communicate via a thread-safe queue as shown in Figure 2.

4.1 Transmitter design
The transmitter consists of three stages – the source encoder,

the modulator, and playback mechanism. The encoder reads in-

coming datagrams from the UDP socket attached to the tunnel

relay application, wraps them in a frame header, and optionally

applies R-S codes. The modulator converts the incoming byte-

oriented data frame into symbols of 0s and 1s for binary FSK (or

the 2-bit symbols 00, 01, 10, and 11 for 4-FSK) and then trans-

lates the symbols into the samples of the sine wave that corres-

pond to the frequency representing a given symbol. The modula-

tor also prepends an LFM chirp signal and guard time block to the

beginning of a data frame for synchronization and channel estima-

tion purposes at the receiver. Finally, the transmitter takes the

buffered modulated signal and sends it to the sound card for play-

back. The transmitter can also optionally record each outgoing

modulated data frame in a .wav file for future reference.

4.2 Receiver design
The receiver consists of three stages as well – the correlator,

demodulator, and decoder. The correlator continually reads

blocks of samples from the sound card. The block itself must be

longer than the chirp signal, so that the chirp signal is guaranteed

to fit within two consecutive blocks. For every incoming block,

the correlator concatenates it with the previous block before using

cross-correlation to detect the start of a frame. If a frame is de-

tected, the exact number of samples within the frame is buffered,

and then placed on the queue for the demodulator to pick up.

The demodulator converts an acoustic signal into a bit stream

of 0s and 1s. It optionally takes the impulse response obtained

during frame detection, inverts it with the Levinson-Durbin algo-

rithm [15], and convolves it with the signal as a means of per-

forming channel equalization on a packet-by-packet basis. Re-

gardless of whether inverse filtering is applied, the demodulator

bandpass filters the signal, holds a tournament to see which of the

carriers has the strongest signal over the duration of a symbol, and

outputs the corresponding symbol (0 or 1 for binary FSK; 00, 01,

10, 11 for 4-FSK). It also optionally computes the SNR for the

frame before placing it on the queue for the decoder to pick up.

At the user’s request, the demodulator can also record each in-

coming unprocessed frame and demodulated frame in separate

.wav files and each impulse response and inverse impulse re-

sponse in a .csv file for post-processing.

The decoder applies R-S codes to an incoming data frame

and reports if no errors were detected, if errors were found and

corrected, or if errors were found but could not be corrected. The

decoder also verifies the CRC in the header before extracting the

frame payload, or IP datagram, and sending it out to the TUN

device via the UDP socket.

5. FRAME FORMAT

Figure 3: Format of data frame

Figure 3 depicts the frame format. Each frame begins with a

LFM chirp signal followed by a block of silence known as the

guard time. The 4-byte frame header format is extremely simple,

containing only two fields – a 16-bit CRC and 16-bit length

attribute. All other information relevant for communication is

contained in the headers for the IP and the transport layer, whether

TCP or UDP. User data appears after all headers and fills the

remaining bytes of the frame up to the 255-byte limit.

If R-S codes are enabled, the parity bytes appear after the

frame header and before the IP header. In comparison with the

frame sizes supported by the Micro-modem [3], 255 is a reasona-

ble limit and should be more than adequate for harsh underwater

channels requiring use of noncoherent FSK demodulation.

6. SIGNAL PROCESSING
In order to maintain orthogonality between the tones, the

modulation index is set to 1 so that the distance between the tones

is equivalent to R Hz, where R is the data rate in symbols per

second.

The LFM chirp signal that precedes a frame is generated as

an array of floats. The chirp signal covers only the frequency

band required by the data modulation. Incoming samples are

cross-correlated with the reference chirp signal, which generates

an estimate of the channel’s impulse response. When cross-

correlation yields a value that exceeds the user-defined threshold,

a frame is deemed present and its samples are stored in a buffer.

Once all the samples have arrived, the receiver passes the da-

ta buffer, impulse response estimate, and most recently computed

power spectral density of noise to the demodulator block for

processing. The demodulator is comprised of a series of stages

that implement noncoherent FSK detection.

The first stage, which serves as a means of channel equaliza-

tion on a frame-by-frame basis, takes the impulse response esti-

mate and inverts it by means of the Levinson-Durbin algorithm.

As long as the channel remains fairly constant over the duration of

a data frame and SNR > 12 dB to prevent noisy impulse response

estimates, this method works to mitigate intersymbol interference

(ISI) and problems with the frequency response of the transducers.

Figure 4: Unequalized reception of data frame

Figure 5: Equalized reception of data frame

The inverse impulse response is then convolved with all the

samples in the frame via FFT convolution. Figure 5 displays the

equalized time-domain view of the unequalized data frame shown

in Figure 4. Spectral splatter associated with rapidly turning the

transmitter on and off becomes more evident after applying the

inverse filter, with large spikes appearing at the beginning and end

of the acoustical signals. While spectral splatter does not degrade

performance in a point-to-point system, it is something to consider

when other devices begin sharing the channel, especially one that

is bandwidth-limited. Since R-S codes perform well when errors

occur in bursts, they have been built into the system as a means of

combating spectral splatter from neighboring devices.

After packet synchronization, noncoherent detection begins

with bandpass filtering. When using binary FSK, the incoming

signal is passed through two separate second-order infinite im-

pulse response (IIR) filters (four in 4-FSK) to eliminate signals

outside the band corresponding to the tones representing bits. The

best performance is obtained when the product BT is close to 1.0,

where B is the -3dB bandwidth of the filter in Hz and T is the

duration of a symbol [16].

Upon completion of the filtering stage, the resulting signals

are passed to the envelope detection stage, which first applies the

Hilbert transform to create the analytic signal from the input and

then computes its absolute value. Finally, for each symbol in the

frame, the demodulator compares the envelopes, choosing the

symbol that corresponds to the tone with the larger amplitude.

7. PERFORMANCE
Table 1 lists the running times in milliseconds of various me-

thods within the Java code measured with JRat [17] on three dif-

ferent platforms. The values shown are averages computed over 5

frames. Each frame consisted of a 4-byte frame header, 16 parity

bytes, and 128 bytes of payload, for a total of 1184 bits, which at

1000 bits/second takes 1184 ms to transmit. The total frame

transmission time was 1184 ms plus 50 ms for the chirp signal and

a 10 ms guard time: a total of 1244 ms. The time to encode the

data with R-S codes and modulate the entire block is longest on

the T500, taking 96 ms, or 7.72% of the total frame transmission

time. Note the desktop processor is overclocked to 3.0 GHz.

Table 1: Processing time of subroutines
 Desktop

Q6600 OC

Laptop

T60p

Laptop

T500

Transmit

a. Modulate 8.00 12.00 13.40

b. Encode Reed-Solomon 9.33 74.40 82.60

Sum (a:b) 17.33 86.40 96.00

Frame duration 1244.00 1244.00 1244.00

Comp Time/Signal Length 1.39 % 6.95 % 7.72 %

Receive

c. Cross-correlation 2.36 5.03 4.46

Block length 85.33 85.33 85.33

Comp Time/Signal Length 2.77% 5.89% 5.23%

Demodulate

d. Levinson-Durbin 3.40 3.80 5.33

e. FFT convolution 29.80 65.00 43.83

f. Bandpass filtering 2.60 3.60 4.16

g. Envelope detection 61.60 117.60 84.50

h. Normalizer 1.60 3.70 1.50

i. Comparator 0.40 2.00 0.33

j. Bit Decision 0.40 1.60 0.50

k. Decode Reed-Solomon 1.33 21.40 17.40

l. Write 2 wav files 2.00 3.40 2.60

m. Write IR data to csv file 16.33 55.40 36.00

Sum (d:m) 119.46 277.50 196.15

Frame duration 1244.00 1244.00 1244.00

Comp Time/Signal Length 9.60 % 22.31% 15.77%

Data from the sound card is read in blocks of 4096 samples,

which correspond to approximately 85.33 ms. Two blocks are

concatenated before performing the cross-correlation operation.

Performing cross-correlation on 8192 samples on the slowest

platform consumes 5.03 ms, 5.89% of the duration of an incoming

block of audio samples.

The Levinson-Durbin algorithm, which is O(n2), operates on

480 samples of guard time (10 ms sampled at 48 kHz). The slow-

est platform takes 5.33 ms. We also tested a 20 ms guard time,

where matrix inversion took 13.50 ms on average. For small

numbers of samples, the computation time for a Java implementa-

tion of Levinson-Durbin matrix inversion seems quite practical.

The two functions that consistently consume the most time

on each system are convolution and envelope detection. This is

not surprising, as each requires computing the forward and inverse

FFT of 56,832 samples. Since the worst-case demodulation time

is already about 22% of the duration of the data frame with binary

FSK (and more with 4-FSK), it might be beneficial to investigate

other options, including faster FFT implementations and even the

quadrature receiver for noncoherent energy detection.

8. CONCLUSION
We have described the implementation of an open source all-

software acoustic modem that can handle packets of up to 255

bytes in real time on stock hardware. The modem is paramete-

rized so that the user can adapt it to different operating conditions.

Parameters include modulation technique, symbol rate, frame size,

and ECC overhead. Additionally, the modem performs real-time,

per-packet channel characterization by preceding each frame with

a chirp signal that enables the receiver to compute the channel

impulse response within the relevant band and to compute and

apply an inverse filter for equalization.

9. ACKNOWLEDGMENTS
The authors thank Bruce McNair and Theodore Kamakaris

for the many discussions about practical aspects of building and

measuring the performance of digital communication systems.

10. REFERENCES
[1] J. Preisig, “Acoustic Propagation Consideration for Under-

water Acoustic Communications Network Development,”

Proc. WUWNet’06, Los Angeles, Sept. 2006.

[2] Benthos, “Telesonar Underwater Acoustic Modems Product

Catalog 2009,” URL=http://www.benthos.com/pdf/Modem

%20Telesonar%20Product%20Catalog%20LR.pdf, Accessed

Apr. 2009.

[3] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K.

Ball, “The WHOI Micro-Modem: An Acoustic Communica-

tions and Navigation System for Multiple Platforms,” Proc.

IEEE/MTS OCEANS Conf. Exhib., Washington, D.C., Sept.

2005.

[4] LinkQuest, “Underwater Acoustic Modem Models,”

URL=http://www.link-quest.com/html/uwm_hr.pdf, Ac-

cessed Apr. 2009.

[5] DSPComm, “AquaComm: Underwater wireless modem,”

URL=http://www.dspcomm.com/products_aquacomm.html,

Accessed Apr. 2009.

[6] Tritech, “AM-300 Acoustic Modem,”

URL=http://www.tritech.co.uk/products/datasheets/am-300-

acoustic-modem.pdf, Accessed Apr. 2009.

[7] E. Sözer and M. Stojanovic, “Reconfigurable Acoustic Mod-

em for Underwater Sensor Networks,” Proc. WUWNet’06,

Los Angeles, Sept. 2006.

[8] T. Sailer, “Soundmodem on Modern Operating Systems

(2000),” URL=http://www.baycom.org/~tom/ham/dcc2000/

soundmodem.pdf, Accessed Apr. 2009.

[9] J. Olds, “J-QAM: A QAM soundcard modem,”

URL=http://homepages.paradise.net.nz/peterfr2/QAM.htm,

Accessed Apr. 2009.

[10] C. Pelekanakis, M. Stojanovic, and L. Freitag, “High Rate

Acoustic Link for Underwater Video Transmission,” Proc.

OCEANS 2003, Vol. 2, pp. 1091–1097, Sept. 2003.

[11] “GNU Radio: the gnu software radio,”

URL=http://gnuradio.org/trac/wiki, Accessed Apr. 2009.

[12] T. Fu, D. Doonan, C. Utley, R. Iltis, R. Kastner, and H. Lee,

“Design and Development of a Software-Defined Underwa-

ter Acoustic Modem for Sensor Networks for Environmental

and Ecological Research,” Proc. OCEANS 2006, Sept. 2006.

[13] J.-K. Hwang, “Innovative communication design lab based

on PC sound card and Matlab: a software-defined-radio

OFDM modem example,” Proc. IEEE Int. Conf. on Acous-

tics, Speech, and Signal Processing, Vol. 3, pp. 761-4, Apr.

2003.

[14] H. Yan, S. Zhou, Z. J. Shi, and B. Li, “A DSP Implementa-

tion of OFDM Acoustic Modem,” Proc. WUWNet’07, Mon-

treal, Sept. 2007.

[15] J. G. Proakis and D. G. Manolakis, Digital Signal

Processing: Principles, Algorithms, and Applications, Fourth

Edition, Pearson: Upper Saddle River, 2007.

[16] Watkins-Johnson Company, “FSK: Signals and Demodula-

tion, tech-notes,” Vol. 7, No. 5, Sept./Oct. 1980.

[17] JRat, The Java Runtime Analysis Toolkit.

URL=http://jrat.sourceforge.net, Accessed Apr. 2009.

